Publications by authors named "DreiSSigacker C"

Novel material thin-film solar cells are promising alternatives to conventional solar cells for future space applications. Previous terrestrial investigations have shown promising stability under simulated space conditions, pioneering the next step to test these solar cells under space conditions. Here, we present the sounding rocket experiment OHSCIS to characterize the electronic behavior of Organic and Hybrid Solar Cells In Space (OHSCIS).

View Article and Find Full Text PDF

A new x-ray isothermal furnace has been developed, suitable for in situ observations of semi-solid processes including the transition from dendritic to globulitic grain morphology and grain coarsening in metallic samples. A homogeneous, isothermal temperature field is achieved using a novel heater concept. The furnace structure is sandwich-like with heating elements positioned in the beam line and parallel to the sample.

View Article and Find Full Text PDF

Elastic properties of a granular packing show a nonlinear behavior determined by its discrete structure and nonlinear inter-grain force laws. Acoustic waves show a transition from constant, pressure-dependent sound speed to a shock-wave-like behavior with an amplitude-determined propagation speed. This becomes increasingly visible at low static confinement pressure as the transient regime shifts to lower wave amplitudes for lower static pressure.

View Article and Find Full Text PDF

A compact fully protected microfocus X-radiography facility (XRISE-M) is presented for the study of microstructure evolution during the solidification of thin liquid alloy samples and chemical diffusion in liquid binary alloys in situ and in real-time aboard a sounding rocket. XRISE-M presently enables the simultaneous processing of either two near-isothermal solidification furnaces or a combination of a linear-shear cell diffusion furnace and a near-isothermal solidification furnace. For optimal detector calibration shortly before flight, the furnaces can be rotated around the central beam axis and calibration images can be recorded.

View Article and Find Full Text PDF

We describe a highly integrated automated experiment module that allows us to investigate the active Brownian motion of light-driven colloidal Janus-particle suspensions. The module RAMSES (RAndom Motion of SElf-propelled particles in Space) is designed for the sounding rocket platform MAPHEUS (MAterialPHysikalische Experimente Unter Schwerelosigkeit). It allows us to perform experiments under weightlessness conditions in order to avoid sedimentation of the Janus particles and thus to study the spatially three-dimensional dynamics in the suspension.

View Article and Find Full Text PDF

A new experimental design for directional solidification experiments with high cooling rates under microgravity conditions is presented. The aerogel-based furnace module ARTEC (AeRogel TEchnology for Cast alloys) developed at DLR extends the earlier presented sounding rocket facility ARTEX by enabling a transition from low to high solidification velocities and a simultaneous operation of five independent furnaces in the same sounding rocket module. The furnaces for directional solidification are equipped with thermally insulating aerogels as a crucible material.

View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.

View Article and Find Full Text PDF

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016.

View Article and Find Full Text PDF

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.

View Article and Find Full Text PDF

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.

View Article and Find Full Text PDF

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.

View Article and Find Full Text PDF

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.

View Article and Find Full Text PDF

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.

View Article and Find Full Text PDF

In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required.

View Article and Find Full Text PDF