Importance: Aortic stenosis (AS) and coronary artery disease (CAD) frequently coexist. However, it is unknown which genetic and cardiovascular risk factors might be AS-specific and which could be shared between AS and CAD.
Objective: To identify genetic risk loci and cardiovascular risk factors with AS-specific associations.
Purpose Of Review: This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues.
Recent Findings: Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics.
The identification of TBX5-related regulatory sequences in genes essential for heart development is hampered by the absence of antibodies which allow precipitation of TBX5:DNA complexes. Employing CRISPR/Cas9 technology, we have inserted a FLAG-tag sequence at the end of exon 9 of the TBX5 gene prior to the stop codon by homologous recombination. The translated TBX5-FLAG fusion protein of the three iPSC lines can effectively be precipitated by anti-FLAG antibodies and, thus, allow the detection of specific TBX5-binding sites and their associated genes.
View Article and Find Full Text PDFTBX5 is a transcription factor which plays an essential role at different checkpoints during cardiac differentiation. However, regulatory pathways affected by TBX5 still remain ill-defined. We have applied the CRISPR/Cas9 technology using a completely plasmid-free approach to correct a heterozygous causative "loss-of function" TBX5 mutation in an iPSC line (DHMi004-A), that has been established from a patient suffering from Holt-Oram syndrome (HOS).
View Article and Find Full Text PDFHere, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes.
View Article and Find Full Text PDFTBX5 is a transcription factor (TF) playing essential role during cardiogenesis. It is well known that TF mutations possibly result in non- or additional binding of the DNA due to conformational changes of the protein. We introduced a Holt-Oram Syndrome (HOS) patient-specific TBX5 mutation c.
View Article and Find Full Text PDFCardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials.
View Article and Find Full Text PDFSystemic-to-pulmonary shunt malfunction contributes to morbidity in children with complex congenital heart disease after palliative procedure. Neointimal hyperplasia might play a role in the pathogenesis increasing risk for shunt obstruction. The aim was to evaluate the role of epidermal growth factor receptor (EGFR) and matrix-metalloproteinase 9 (MMP-9) in the formation of neointimal within shunts.
View Article and Find Full Text PDFAlthough TBX5 plays a major role during human cardiogenesis and initiates and controls limb development, many of its interactions with genomic DNA and the resulting biological consequences are not well known. Existing anti-TBX5-antibodies work very inefficiently in certain applications such as ChIP-Seq analysis. To circumvent this drawback, we introduced a FLAG-tag sequence into the TBX5 locus at the end of exon 9 prior to the stop codon by CRISPR/Cas9.
View Article and Find Full Text PDFAims: The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect.
Methods And Results: We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29.
Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular endothelium. The association of an altered total EPC number and function with cardiovascular diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key mechanisms in CVD.
View Article and Find Full Text PDFMetastatic patterns of squamous cell cervical cancer are well described in the literature. Advancements in radiologic imaging have improved the ability to detect unusual sites of metastatic disease. We describe a unique case of isolated distant metastases to the skeletal muscle and adipose tissue detected by PET-CT.
View Article and Find Full Text PDFCardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs' cellular origin in the heart remains elusive. We studied the molecular identity of CDCs using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and endothelial cells/ECs).
View Article and Find Full Text PDFA number of mutations in the human TBX5 gene have been described which cause Holt-Oram syndrome, a severe congenital disease associated with abnormalities in heart and upper limb development. We have used a prime-editing approach to introduce a patient-specific disease-causing TBX5 mutation (c.920_C > A) into an induced pluripotent stem cell (iPSC) line from a healthy donor.
View Article and Find Full Text PDFWe generated an induced pluripotent stem cell (iPSC) line from a healthy male 29-year-old proband. Adipose fibroblasts (AFs) were reprogrammed using Sendai virus. Generated iPSCs showed typical stem cell morphology.
View Article and Find Full Text PDFThe Holt-Oram syndrome (HOS) is a rare autosomal dominant disorder, mostly based on mutations in the TBX5 gene. Patients show malformation of at least one upper limb along with congenital heart defects. The established induced pluripotent stem cell (iPSC) line was generated from a patient displaying pronounced and typical features of HOS and carrying a single-nucleotide change c.
View Article and Find Full Text PDFBackground: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role.
View Article and Find Full Text PDFAcute type A aortic dissection (ATAAD) constitutes a life-threatening aortic pathology with significant morbidity and mortality. Without surgical intervention the usual mortality rate averages between 1 and 2% per hour. Thus, an early diagnosis of ATAAD is of pivotal importance to direct the affected patients to the appropriate treatment.
View Article and Find Full Text PDFThe adult mammalian heart consists of mononuclear and binuclear cardiomyocytes (CMs) with various ploidies. However, it remains unclear whether a variation in ploidy or number of nuclei is associated with distinct functions and injury responses in CMs, including regeneration. Therefore, we investigated transcriptomes and cellular as well as nuclear features of mononucleated and binucleated CMs in adult mouse hearts with and without injury.
View Article and Find Full Text PDFGenetic factors undoubtedly affect the development of congenital heart disease (CHD) but still remain ill defined. We sought to identify genetic risk factors associated with CHD and to accomplish a functional analysis of SNP-carrying genes. We performed a genome-wide association study (GWAS) of 4034 White patients with CHD and 8486 healthy controls.
View Article and Find Full Text PDFMicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis.
View Article and Find Full Text PDFPurpose Of Review: 3D bioprinting technologies hold significant promise for the generation of engineered cardiac tissue and translational applications in medicine. To generate a clinically relevant sized tissue, the provisioning of a perfusable vascular network that provides nutrients to cells in the tissue is a major challenge. This review summarizes the recent vascularization strategies for engineering 3D cardiac tissues.
View Article and Find Full Text PDFMyosin binding protein H-like (MYBPHL) is a protein associated with myofilament structures in atrial tissue. The protein exists in two isoforms that share an identical amino acid sequence except for a deletion of 23 amino acids in isoform 2. In this study, MYBPHL was found to be expressed preferentially in atrial tissue.
View Article and Find Full Text PDFGa-DOTATATE imaging for meningiomas is gaining clinical use for selecting patients that may benefit from targeted therapy (eg, Lu-DOTATATE). We present an image of a 67-year-old man with an intracranial WHO grade III anaplastic meningioma. He underwent tumor resection followed by intensity-modulated radiation therapy but experienced a recurrence 25 months later.
View Article and Find Full Text PDF