Artificial Intelligence (AI) models may fail or suffer from reduced performance when applied to unseen data that differs from the training data distribution, referred to as dataset shift. Automatic detection of out-of-distribution (OOD) data contributes to safe and reliable clinical implementation of AI models. In this study, we propose a recognized OOD detection method that utilizes the Mahalanobis distance (MD) and compare its performance to widely known classical methods.
View Article and Find Full Text PDFObjective: To investigate the effect of uncertainty estimation on the performance of a Deep Learning (DL) algorithm for estimating malignancy risk of pulmonary nodules.
Methods And Materials: In this retrospective study, we integrated an uncertainty estimation method into a previously developed DL algorithm for nodule malignancy risk estimation. Uncertainty thresholds were developed using CT data from the Danish Lung Cancer Screening Trial (DLCST), containing 883 nodules (65 malignant) collected between 2004 and 2010.