Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering.
View Article and Find Full Text PDFScope: To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene.
View Article and Find Full Text PDFDevelopmental stuttering is a common speech disorder with strong genetic underpinnings. Recently, stuttering has been associated with mutations in genes involved in lysosomal enzyme trafficking. However, how these mutations affect the brains of people who stutter remains largely unknown.
View Article and Find Full Text PDFDevelopmental stuttering is a childhood onset neurodevelopmental disorder with an unclear etiology. Subtle changes in brain structure and function are present in both children and adults who stutter. It is a highly heritable disorder, and 12-20% of stuttering cases may carry a mutation in one of four genes involved in intracellular trafficking.
View Article and Find Full Text PDFOur sense of taste arises from the sensory information generated after compounds in the oral cavity and oropharynx activate taste receptor cells situated on taste buds. This produces the perception of sweet, bitter, salty, sour, or umami stimuli, depending on the chemical nature of the tastant. Taste impairments (dysgeusia) are alterations of this normal gustatory functioning that may result in complete taste losses (ageusia), partial reductions (hypogeusia), or over-acuteness of the sense of taste (hypergeusia).
View Article and Find Full Text PDFStuttering is a common neurodevelopmental disorder that has been associated with mutations in genes involved in intracellular trafficking. However, the cellular mechanisms leading to stuttering remain unknown. Engineering a mutation in -acetylglucosamine-1-phosphate transferase subunits α and β (GNPTAB) found in humans who stutter into the mouse gene resulted in deficits in the flow of ultrasonic vocalizations similar to speech deficits of humans who stutter.
View Article and Find Full Text PDFPurpose: We investigated whether outcomes of therapy for persistent developmental stuttering differ in individuals who carry a mutation in one of the known genes associated with stuttering compared to individuals without such mutations.
Method: We studied outcomes of an intensive fluency shaping-based therapy program in individuals with persistent developmental stuttering. We evaluated a cohort of 51 stuttering individuals with who carried a mutation in either the GNPTAB, GNPTG, NAGPA, or AP4E1 gene.
In the U.S., more than 80% of African-American smokers use mentholated cigarettes, compared to less than 30% of Caucasian smokers.
View Article and Find Full Text PDFIt was shown more than 40 years ago that the ability to perceive the bitterness of the fruit of the Antidesma bunius tree is inversely correlated with the ability to perceive the well-studied bitter tastant phenylthiocarbamide (PTC). To determine if variants of the TAS2R38 gene, which encodes the PTC taste receptor, or variants in any of the other TAS2R bitter or TAS1R sweet receptor genes account for Antidesma taste perception, we recruited an independent subject sample and examined associations between these taste receptor gene haplotypes and Antidesma perception. Consistent with previous findings, almost none of our subjects who reported Antidesma juice as bitter was a PTC "responder" by previous definitions (i.
View Article and Find Full Text PDFEvidence for genetic factors in persistent developmental stuttering has accumulated over the past four decades, and the genes that underlie this disorder are starting to be identified. The genes identified to date, all point to deficits in intracellular trafficking in this disorder.
View Article and Find Full Text PDFLineage-specific gene losses can be driven by selection or environmental adaptations. However, a lack of studies on the original function of species-specific pseudogenes leaves a gap in our understanding of their role in evolutionary histories. Pseudogenes are of particular relevance for taste perception genes, which encode for receptors that confer the ability to both identify nutritionally valuable substances and avoid potentially harmful substances.
View Article and Find Full Text PDFCommon TAS2R38 taste receptor gene variants specify the ability to taste phenylthiocarbamide (PTC), 6-n-propylthiouracil (PROP) and structurally related compounds. Tobacco smoke contains a complex mixture of chemical substances of varying structure and functionality, some of which activate different taste receptors. Accordingly, it has been suggested that non-taster individuals may be more likely to smoke because of their inability to taste bitter compounds present in tobacco smoke, but results to date have been conflicting.
View Article and Find Full Text PDFBitter taste receptor genes (TAS2Rs) harbor extensive diversity, which is broadly distributed across human populations and strongly associated with taste response phenotypes. The majority of TAS2R variation is composed of single-nucleotide polymorphisms. However, 2 closely positioned loci at 12p13, TAS2R43 and -45, harbor high-frequency deletion (Δ) alleles in which genomic segments are absent, resulting in copy number variation (CNV).
View Article and Find Full Text PDFA promising approach to understanding the mechanistic basis of speech is to study disorders that affect speech without compromising other cognitive or motor functions. Stuttering, also known as stammering, has been linked to mutations in the lysosomal enzyme-targeting pathway, but how this remarkably specific speech deficit arises from mutations in a family of general "cellular housekeeping" genes is unknown. To address this question, we asked whether a missense mutation associated with human stuttering causes vocal or other abnormalities in mice.
View Article and Find Full Text PDFRecent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches.
View Article and Find Full Text PDFStuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.
View Article and Find Full Text PDFPine mouth, also known as pine nut syndrome, is an uncommon dysgeusia that generally begins 12 to 48 hours after consuming pine nuts. It is characterized by a bitter metallic taste, usually amplified by the consumption of other foods, which lasts 2 to 4 weeks. Recent findings have correlated this disorder with the consumption of nuts of the species Pinus armandii, but no potential triggers or common underlying medical causes have been identified in individuals affected by this syndrome.
View Article and Find Full Text PDFHomozygous mutations in GNPTAB and GNPTG are classically associated with mucolipidosis II (ML II) alpha/beta and mucolipidosis III (ML III) alpha/beta/gamma, which are rare lysosomal storage disorders characterized by multiple pathologies. Recently, variants in GNPTAB, GNPTG, and the functionally related NAGPA gene have been associated with non-syndromic persistent stuttering. In a worldwide sample of 1013 unrelated individuals with non-syndromic persistent stuttering we found 164 individuals who carried a rare non-synonymous coding variant in one of these three genes.
View Article and Find Full Text PDFBackground: Human bitter taste receptors are encoded by a gene family consisting of 25 functional TAS2R loci. In addition, humans carry 11 TAS2R pseudogenes, some of which display evidence for substantial diversification among species, showing lineage-specific loss of function. Since bitter taste is thought to help prevent the intake of toxic substances, diversity at TAS2R genes could reflect the action of natural selection on the ability to recognize some bitter compounds rather than others.
View Article and Find Full Text PDFA number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls.
View Article and Find Full Text PDF