Background: In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion.
Methods: This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response.
The epithelial sodium channel (ENaC) plays a crucial role in salt and water homeostasis and is primarily involved in sodium reabsorption in the kidney and lung. Modulators of ENaC function, particularly within lung epithelia, could offer potential treatments for a number of diseases. As a constitutively active sodium channel, ENaC expression at the cell membrane is highly regulated through rapid turnover.
View Article and Find Full Text PDFActivation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.
View Article and Find Full Text PDFLysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole- and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists.
View Article and Find Full Text PDFA novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.
View Article and Find Full Text PDFFuture Med Chem
October 2011
In 2002, the first long-acting muscarinic antagonist, tiotropium bromide (Spiriva(®)), was launched as a once-daily bronchodilating agent for the treatment of chronic obstructive pulmonary disease. Since then, there has been intense discovery research activity in this area and, currently, several alternative inhaled long-acting muscarinic antagonists are reported under clinical development by several pharmaceutical companies. This article will review the current inhaled development candidates, as well as literature reports of the most significant preclinical chemical series specifically designed as inhaled antimuscarinic agents.
View Article and Find Full Text PDFThe discovery of potent and selective cyanamide-based inhibitors of the cysteine protease cathepsin C is detailed. Optimization of the template with regard to plasma stability led to the identification of compound 17, a potent cathepsin C inhibitor with excellent selectivity over other cathepsins and potent in vivo activity in a cigarette smoke mouse model.
View Article and Find Full Text PDFImportance To The Field: Cathepsin C (dipeptidyl peptidase I) plays a key role in the activation of several degradative enzymes linked to tissue destruction in inflammatory diseases. Thus, cathepsin C inhibitors could potentially be effective therapeutics for the treatment of such diseases as chronic obstructive pulmonary disease and cystic fibrosis.
Areas Covered In This Review: Although this article focuses on cathepsin C inhibitor patents, the journal literature concerning small molecule inhibitors of the enzyme is also covered comprehensively (1981 - 2009).
Expert Rev Clin Pharmacol
January 2010
Muscarinic acetylcholine receptor antagonists, particularly of the M(3) subtype, are useful therapeutics as bronchodilators in chronic obstructive pulmonary disease (COPD). The first long-acting muscarinic antagonist, tiotropium bromide (Spiriva(®)), was launched in 2002 and has since become established as the gold-standard muscarinic antagonist for the treatment of COPD. This review will survey the preclinical profiles of tiotropium and nine inhaled development candidates as well as literature reports of other preclinical compounds specifically designed as inhaled antimuscarinic agents for the treatment of COPD.
View Article and Find Full Text PDFNovel tropane derivatives were characterized as muscarinic acetylcholine receptor antagonists (mAChRs). Through optimization of the structure-activity relationship around the tropane scaffold, the quaternary ammonium salt 34 was identified as a very potent M(3) mAChR antagonist. The compound was functionally active and displayed greater than 24 h duration of action in a mouse model of bronchoconstriction.
View Article and Find Full Text PDFDesign and syntheses of a novel series of muscarinic antagonists are reported. These efforts have culminated in the discovery of (3-endo)-3-(2-cyano-2,2-diphenylethyl)-8,8-dimethyl-8-azoniabicyclo[3.2.
View Article and Find Full Text PDFA novel 4-hydroxyl(diphenyl)methyl substituted quinuclidine series was discovered as a very promising class of muscarinic antagonists. The structure-activity relationships of the connectivity of the diphenyl moiety to the quinuclidine core and around the ring nitrogen side chain are described. Computational docking studies using an homology model of the M(3) receptor readily explained the observed structure-activity relationship of the various compounds.
View Article and Find Full Text PDFExploration of multiple regions of a bi-aryl amine template led to the identification of highly potent M(3) muscarinic acetylcholine receptor antagonists such as 14 (pA(2)=11.0) possessing good sub-type selectivity for M(3) over M(2). The structure-activity relationships (SAR) and optimization of the bi-aryl amine series are described.
View Article and Find Full Text PDFA short synthesis of the non-adjacent bis-THF core of the Annonaceous acetogenin cis-sylvaticin (1) is described. C(2) Symmetrical (Z,E,E,Z)- and (E,E,E,E)-tetraenes and were synthesised in six and three steps respectively from (1E,5E,9E)-cyclododeca-1,5,9-triene. Subsequent permanganate promoted asymmetric bi-directional oxidative cyclisation of tetraene was used to create the non-adjacent bis-THF core of 1, installing seven of the nine stereogenic centres present in the natural product in a single step.
View Article and Find Full Text PDFA series of novel biphenyl piperazines was discovered as highly potent muscarinic acetylcholine receptor antagonists via high throughput screening and subsequent optimization. Compound 5c with respective 500- and 20-fold subtype selectivity for M3 over M2 and M1 exhibited excellent inhibitory activity and long duration of action in a bronchoconstriction in vivo model in mice via intranasal administration. The novel inhaled mAChR antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease.
View Article and Find Full Text PDFThe biphenyl amides (BPAs) are a novel series of p38alpha MAP kinase inhibitor. The optimisation of the series to give compounds that are potent in an in vivo disease model is discussed. SAR is presented and rationalised with reference to the crystallographic binding mode.
View Article and Find Full Text PDFThe biphenyl amides (BPAs) are a series of p38alpha MAP kinase inhibitors. Compounds are able to bind to the kinase in either the DFG-in or DFG-out conformation, depending on substituents. X-ray, binding, kinetic and cellular data are shown, providing the most detailed comparison to date between potent compounds from the same chemical series that bind to different p38alpha conformations.
View Article and Find Full Text PDFIn the course of our research program to develop novel muscarinic receptor antagonists for the treatment of COPD, new tropane carbamate derivatives were identified as potent anti-muscarinic agents. The synthesis, structure-activity relationships and pharmacological evaluation that led to the identification of compound 5o, are described.
View Article and Find Full Text PDF