Publications by authors named "Drahokoupil J"

In this study, we present a method for selecting an arbitrary number of distinct configurations from a larger data set by applying -means clustering to atomistic configuration fingerprints based on the CrystalNN model and radial distribution function (RDF). This approach improves the accuracy of fitting classical molecular dynamics interatomic potentials to density functional theory (DFT) data for both energies and forces while requiring fewer configurations than random selection. We demonstrate this improvement by fitting an embedded-atom method (EAM) potential for titanium, using various configurational sizes from an initial set of 1800 configurations.

View Article and Find Full Text PDF

Commercially pure titanium grade II was kinetically nitrided by implanting nitrogen ions with a fluence in the range of (1-9)·10 cm and ion energy of 90 keV. Post-implantation annealing in the temperature stability range of TiN (up to 600 °C) shows hardness degradation for titanium implanted with high fluences above 6·10 cm, leading to nitrogen oversaturation. Temperature-induced redistribution of interstitially located nitrogen in the oversaturated lattice has been found to be the predominant hardness degradation mechanism.

View Article and Find Full Text PDF

The influence of Mo on the electronic states and crystalline structure, as well as morphology, phase composition, luminescence, and defects in ZnO rods grown as free-standing nanoparticles, was studied using a variety of experimental techniques. Mo has almost no influence on the luminescence of the grown ZnO particles, whereas shallow donors are strongly affected in ZnO rods. Annealing in air causes exciton and defect-related bands to drop upon Mo doping level.

View Article and Find Full Text PDF

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy.

View Article and Find Full Text PDF

The present work aimed to study the properties of medium-carbon steel during tempering treatment and to present the strength increase of medium-carbon spring steels by strain-assisted tempering (SAT). The effect of double-step tempering and double-step tempering with rotary swaging, also known as SAT, on the mechanical properties and microstructure was investigated. The main goal was to achieve a further enhancement of the strength of medium-carbon steels using SAT treatment.

View Article and Find Full Text PDF

Novel Yb,Tb,Nd-doped GdF and NaGdF nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid--maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb, Tb, and Nd ions in the NaGdF host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI).

View Article and Find Full Text PDF

Lattice strain in oxygen ion conductors can be used to tune their functional properties for applications in fuel cells, sensors, or catalysis. However, experimental measurements of thin film strain in both in- and out-of-plane directions can be experimentally challenging. We propose a method for measuring strain in rare-earth doped ceria thin films by polarized Raman spectroscopy.

View Article and Find Full Text PDF

The impact of four pre-treatment techniques on the surface morphology and chemistry, residual stress, mechanical properties, corrosion resistance in a physiological saline solution and cell colonization of commercially pure titanium is examined in detail. Mechanical polishing, electrochemical etching, chemical etching in Kroll's reagent, and ion sputter etching with argon ions were applied. Surface morphologies reflect the nature of surface layer removal.

View Article and Find Full Text PDF

The Zn-based alloys, alloyed with the elements of the 2nd group of the periodic table, are considered as potential biodegradable materials suitable for the fabrication of small orthopaedic implants or cardiovascular stents. Unfortunately, the as-cast Zn-based alloys do not fulfil the requirements for mechanical properties for such applications. Extrusion is a thermomechanical process which is very powerful for breaking the cast microstructure and enhancing mechanical characteristics of metallic materials.

View Article and Find Full Text PDF

Severe plastic deformation represented by three passes in Conform SPD and subsequent rotary swaging was applied on Ti grade 4. This process caused extreme strengthening of material, accompanied by reduction of ductility. Mechanical properties of such material were then tuned by a suitable heat treatment.

View Article and Find Full Text PDF

We have found low temperature a/b nanotwins having (110) twinning plane in a five-layered modulated martensite phase of NiMnGa (at. %) Heusler alloys and identified the particular region in phase diagram where the nanotwinning occurs. Evolution of the structure with decreasing temperature was studied by X-ray diffraction using single crystals exhibiting magnetic shape memory effect.

View Article and Find Full Text PDF

The goal of our study is to design BaTiO ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO and Pt layers were prepared using KrF excimer laser ablation at substrate temperature T in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa.

View Article and Find Full Text PDF

Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.

View Article and Find Full Text PDF

BaTiO (BTO) layers were deposited by pulsed laser deposition (PLD) on TiNb, Pt/TiNb, Si (100), and fused silica substrates using various deposition conditions. Polycrystalline BTO with sizes of crystallites in the range from 90nm to 160nm was obtained at elevated substrate temperatures of (600°C-700°C). With increasing deposition temperature above 700°C the formation of unwanted rutile phase prevented the growth of perovskite ferroelectric BTO.

View Article and Find Full Text PDF

Polarized Raman, IR, and time-domain THz spectroscopy of orthorhombic lead zirconate single crystals have yielded a comprehensive picture of temperature-dependent quasiharmonic frequencies of its low-frequency phonon modes. It is argued that these modes primarily involve vibrations of Pb ions and librations of oxygen octahedra. Their relation to phonon modes of the parent cubic phase is proposed.

View Article and Find Full Text PDF

One of the purposes of this work is to provide a crystallographic review of group 1 and thallium rare-earth ternary sulfides M(+)Ln(3+)S2. We have therefore determined crystal structures of KLaS2, KPrS2, KEuS2, KGdS2, KLuS2, KYS2, RbYS2, which belong to the α-NaFeO2 structural family (R3m), as well as NaLaS2, which is derived from the disordered NaCl structural type (Fm3m). The determined structures were compared with known members of the group 1 as well as thallium(I) rare-earth sulfides by the standard tools of crystal-chemical analysis such as comparison of bond-valences, analysis of interatomic distances and comparison of the unit-cell parameters.

View Article and Find Full Text PDF

The evolution of elastic properties with temperature and magnetic field was studied in two differently heat-treated single crystals of the Ni-Mn-Ga magnetic shape memory alloy using resonant ultrasound spectroscopy. Quenching and slow furnace cooling were used to obtain different densities of antiphase boundaries. We found that the crystals exhibited pronounced differences in the c' elastic coefficient and related shear damping in high-temperature ferromagnetic phases (austenite and premartensite).

View Article and Find Full Text PDF