Publications by authors named "Dragoljub Pokrajac"

Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. This study aimed to elucidate the effectiveness of two non-linear measures, Higuchi's Fractal Dimension (HFD) and Sample Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector Machines with the linear and polynomial kernel, Decision Tree, Random Forest, and Naïve Bayes classifier, discriminating EEG between healthy control subjects and patients diagnosed with depression.

View Article and Find Full Text PDF

Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs.

View Article and Find Full Text PDF

Objective: The objective of this paper is to classify 3D medical images by analyzing spatial distributions to model and characterize the arrangement of the regions of interest (ROIs) in 3D space.

Methods And Material: Two methods are proposed for facilitating such classification. The first method uses measures of similarity, such as the Mahalanobis distance and the Kullback-Leibler (KL) divergence, to compute the difference between spatial probability distributions of ROIs in an image of a new subject and each of the considered classes represented by historical data (e.

View Article and Find Full Text PDF