Publications by authors named "Drago Haas"

Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes.

View Article and Find Full Text PDF

Analysis of the genes retained in the minimized JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool.

View Article and Find Full Text PDF

JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, , we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.

View Article and Find Full Text PDF

Enzymes of unknown function are estimated to make up around 25% of the sequenced proteome. In the past decade, over 20 conserved families have been shown to function in the metabolism of 'damaged' or abnormal metabolites that are wasteful and often toxic. These newly discovered damage-control enzymes either repair or inactivate the offending metabolites, or pre-empt their formation in the first place.

View Article and Find Full Text PDF

We report the draft genome sequence of sp. M1013, a strain isolated from the rhizosphere in Izmir, Turkey. An average nucleotide identity (ANI) analysis reveals that this strain belongs to the same species as ATCC12647 and is closely related to and .

View Article and Find Full Text PDF

Post-transcriptional tRNA modifications are numerous and require a large set of highly conserved enzymes in humans and other organisms. In yeast, the loss of many modifications is tolerated under unstressed conditions; one exception is the N-threonyl-carbamoyl-adenosine (tA) modification, loss of which causes a severe growth phenotype. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with global developmental delay, failure to thrive and a renal defect manifesting in proteinuria and hypomagnesemia.

View Article and Find Full Text PDF

Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3 Mbp linear chromosome and a 89 kb circular plasmid.

View Article and Find Full Text PDF