Publications by authors named "Dragana Josifova"

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown.

View Article and Find Full Text PDF

Purpose: Bi-allelic variants in CABP4 are associated with congenital cone-rod synaptic disorder, which has also been classified, electrophysiologically, as incomplete congenital stationary night blindness (iCSNB). We describe clinical findings in a patient who demonstrated an unusual macular optical coherence tomography (OCT) phenotype, not previously reported in this condition.

Methods: Our patient underwent multimodal retinal imaging, international standard full-field ERG testing and whole genome sequencing.

View Article and Find Full Text PDF

Background: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs).

View Article and Find Full Text PDF

A 25-year-old woman with childhood-onset refractory epilepsy and developmental delay experienced a gradually progressive marked deterioration in mobility and seizure control, with language regression. Investigation identified a homozygous deletion within the contactin-associated protein-like 2 gene (), underlying her early presentation, but also cerebral folate deficiency that most likely contributed to her later deterioration. Following antiseizure medication adjustment and treatment with folinic acid, she stabilised with improved seizure control and limited improvement in language and motor function; she has remained neurologically stable for more than a decade.

View Article and Find Full Text PDF

Purpose: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants.

Methods: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells.

Results: Biallelic variants in CRELD1 were found in 18 participants from 14 families.

View Article and Find Full Text PDF

Background: Current clinical testing methods used to uncover the genetic basis of rare disease have inherent limitations, which can lead to causative pathogenic variants being missed. Within the rare disease arm of the 100 000 Genomes Project (100kGP), families were recruited under the clinical indication 'single autosomal recessive mutation in rare disease'. These participants presented with strong clinical suspicion for a specific autosomal recessive disorder, but only one suspected pathogenic variant had been identified through standard-of-care testing.

View Article and Find Full Text PDF
Article Synopsis
  • A study explored the effectiveness of using short-read and long-read genome sequencing to identify genetic causes of neurodevelopmental disorders (NDDs) in individuals who previously did not receive a genetic diagnosis.
  • The research involved 692 individuals, finding causal variants in 36% of affected individuals and uncertain variants in another 23%.
  • Long-read sequencing proved beneficial for resolving complex structural variants and improving the overall understanding of genetic contributions to NDDs.
View Article and Find Full Text PDF
Article Synopsis
  • Embryonic development relies on precise DNA processes, and mutations in repair genes can cause neurodevelopmental disorders with symptoms like microcephaly and short stature.
  • Researchers identified genetic variants in SLF2 and SMC5 from the RAD18-SLF1/2-SMC5/6 pathway in patients with developmental issues, including abnormal chromosomes and anemia.
  • The new disorder, named Atelís Syndrome, demonstrates heightened replication stress and difficulties with specific DNA structures, emphasizing the crucial role of the SLF2-SMC5/6 pathway in preserving genome stability.
View Article and Find Full Text PDF

Biallelic pathogenic variants in phosphopantothenoylcysteine synthetase, PPCS, are a rare cause of a severe early-onset dilated cardiomyopathy with high morbidity and mortality. To date, only five individuals with PPCS-mutations have been reported. Here, we report a female infant who presented in the neonatal period with hypotonia, a necrotizing myopathy with intermittent rhabdomyolysis and other extracardiac manifestations before developing a progressive and ultimately fatal dilated cardiomyopathy.

View Article and Find Full Text PDF

Background: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the effectiveness of whole genome sequencing in diagnosing suspected mitochondrial diseases among patients.
  • Out of 319 families analyzed, 31% received a definite or probable genetic diagnosis, revealing a diverse range of disorders, not limited to mitochondrial issues.
  • The results indicate that whole genome sequencing is a valuable diagnostic tool that can uncover non-mitochondrial disorders that may have been overlooked with a more targeted testing approach.
View Article and Find Full Text PDF

Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners.

View Article and Find Full Text PDF

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .

View Article and Find Full Text PDF
Article Synopsis
  • Most classical aniridia results from PAX6 haploinsufficiency, and this study explores how missense variants of PAX6 may lead to new types of disease by changing its interaction with the genome.
  • The researchers analyzed 372 individuals with specific eye malformations and discovered eight missense variants linked to bilateral microphthalmia and anophthalmia, accounting for 4% of the studied cases.
  • The findings suggest that these missense variants impact PAX6's DNA affinity and specificity, providing insights into the severe effects observed in individuals with specific ocular conditions.
View Article and Find Full Text PDF

Purpose: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies.

Methods: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT.

View Article and Find Full Text PDF

The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either or , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms.

View Article and Find Full Text PDF

Background: Microdeletions of 2q23.1 disrupting and loss of function mutations of cause Associated Neurodevelopmental disorders (MAND). Nearly all reported patients have been isolated cases of de novo origin.

View Article and Find Full Text PDF

Background: Syntaxin-binding protein 1, encoded by , is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype-phenotype correlations.

View Article and Find Full Text PDF
Genetics of gynaecological disorders.

Best Pract Res Clin Obstet Gynaecol

July 2017

From genomic imbalances associated with developmental abnormalities of the female genital tract to the molecular mechanisms underpinning endometriosis and uterine leiomyomatosis, new technologies have allowed the exploration of the genetic contribution and mapping the molecular pathways underpinning common and rare gynaecological conditions. While some of these conditions have historically been considered sporadic, recent research has demonstrated their potentially heritable nature linked to single genes or copy number variants. The phenotypic variability including non-penetrance indicates their multifactorial, complex aetiology encompassing genetic, epigenetic and environmental influences.

View Article and Find Full Text PDF

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals.

View Article and Find Full Text PDF

We identified de novo nonsense variants in KIDINS220/ARMS in three unrelated patients with spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO). KIDINS220 is an essential scaffold protein coordinating neurotrophin signal pathways in neurites and is spatially and temporally regulated in the brain. Molecular analysis of patients' variants confirmed expression and translation of truncated transcripts similar to recently characterized alternative terminal exon splice isoforms of KIDINS220 KIDINS220 undergoes extensive alternative splicing in specific neuronal populations and developmental time points, reflecting its complex role in neuronal maturation.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The SHOX gene is linked to short stature and skeletal issues, primarily affecting females, and has a potential association with neurodevelopmental disorders (NDDs) like autism spectrum disorders (ASDs).
  • A study analyzed genetic data from adults with ASDs and found that microduplications of the SHOX gene are more common in individuals with NDD, especially in females.
  • The findings suggest that microduplications at the SHOX locus pose a low penetrance risk for ASDs and NDDs, but require additional genetic changes to significantly affect females, potentially due to specific SHOX protein roles in brain development.
View Article and Find Full Text PDF

Background: Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS.

View Article and Find Full Text PDF