Objective: To generate Abcg1(-/-) Apoe(-/-) mice to understand the mechanism and cell types involved in changes in atherosclerosis after loss of ABCG1.
Methods And Results: ABCG1 is highly expressed in macrophages and endothelial cells, 2 cell types that play important roles in the development of atherosclerosis. Abcg1(-/-) Apoe(-/-) and Apoe(-/-) mice and recipient Apoe(-/-) mice that had undergone transplantation with bone marrow from Apoe(-/-) or Abcg1(-/-) Apoe(-/-) mice were fed a Western diet for 12 or 16 weeks before quantification of atherosclerotic lesions.
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development.
View Article and Find Full Text PDFEvery cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins.
View Article and Find Full Text PDFMammalian cells have developed various responses to minimize accumulation of unesterified cholesterol, as the latter can result in cell toxicity and death [reviewed in this edition by Björkhem (Björkhem, I. 2009. Are side-chain oxidized oxysterols regulators also in vivo? J.
View Article and Find Full Text PDFThe murine Abcg1 gene is reported to consist of 15 exons that encode a single mRNA (herein referred to as Abcg1-a) and protein. We now demonstrate that (i) the murine gene contains two additional coding exons downstream of exon 1, (ii) transcription involves the use of multiple promoters, and (iii) the RNA undergoes alternative splicing reactions. As a result, three mRNAs are expressed that encode three putative protein isoforms that differ at their amino terminus.
View Article and Find Full Text PDF