Publications by authors named "Doytchinova I"

SARS-CoV-2 caused the COVID-19 pandemic, which overwhelmed global healthcare systems. Over 776 million COVID-19 cases and more than 7 million deaths were reported by WHO in September 2024. COVID-19 vaccination is crucial for preventing infection and controlling the pandemic.

View Article and Find Full Text PDF

Galanthamine derivatives are known for their AChE inhibitory activity. Among them, galanthamine has been approved for treatment of Alzheimer's disease. N-Acetylnorgalanthamine (narcisine) and N-(2'-methyl)allylnorgalanthamine (the most potent natural AChE inhibitor of galanthamine type) were synthetized using N-norgalanthamine as a precursor.

View Article and Find Full Text PDF

Peanut allergy, a prevalent and potentially severe condition affecting millions worldwide, has been linked to specific human leukocyte antigens (HLAs), suggesting increased susceptibility. Employing an immunoinformatic strategy, we developed a "logo model" based on amino acid frequencies in the peptide binding core and used it to predict peptides originating from 28 known peanut allergens binding to HLA-DRB1*03:01, one of the susceptibility alleles. These peptides hold promise for immunotherapy in HLA-DRB1*03:01 carriers, offering reduced allergenicity compared to whole proteins.

View Article and Find Full Text PDF

Recently, we identified a novel mechanism of enzyme inhibition in N-myristoyltransferases (NMTs), which we have named 'inhibitor trapping'. Inhibitor trapping occurs when the protein captures the small molecule within its structural confines, thereby preventing its free dissociation and resulting in a dramatic increase in inhibitor affinity and potency. Here, we demonstrate that inhibitor trapping also occurs in the kinases.

View Article and Find Full Text PDF
Article Synopsis
  • * The authors developed a new computational method using amino acid frequencies to create quantitative matrices, or 'logo models,' for predicting peptide binding to specific proteins linked to celiac disease.
  • * The method was validated with over 17,000 peptides and showed effectiveness in distinguishing between binding and non-binding interactions, suggesting its potential use for various peptide-protein interactions in research.
View Article and Find Full Text PDF
Article Synopsis
  • Human leukocyte antigens (HLAs) play a crucial role in how the immune system processes and presents antigens, with specific types linked to autoimmune diseases like celiac disease.
  • In celiac disease, certain HLA types (HLA-DQ2.5 and HLA-DQ8.1) bind to gluten peptides, which can lead to inflammation and tissue damage when recognized by CD4+ T cells.
  • The study used molecular docking and quantitative matrices to assess amino acid preferences in peptide binding, achieving high accuracy in predicting peptide-HLA interactions, which can help quickly evaluate the risk of celiac disease from new proteins.
View Article and Find Full Text PDF

Predicting inhibitor potency is critical in drug design and development, yet it has remained one of computational biology's biggest unresolved challenges. Here, we show that in the case of the N-myristoyltransferase (NMT), this problem could be traced to the mechanisms by which the NMT enzyme is inhibited. NMT adopts open or closed conformations necessary for orchestrating the different steps of the catalytic process.

View Article and Find Full Text PDF

Prediction of bacterial immunogens is a prerequisite for the process of vaccine development through reverse vaccinology. The application of in silico methods allows significant reduction in time and cost for the discovery of potential vaccine candidates among proteins of a bacterial species. The steps in the prediction algorithm include collection of protein sequence datasets of known bacterial immunogens and non-immunogens, data preprocessing to transform the protein sequences into numerical matrices suitable for use as training and test sets for various machine learning methods, and derivation of predictive models.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) proteins are the most polymorphic and polygenic proteins in humans. They bind peptides, derived from cleavage of different pathogenic antigens, and are responsible for presenting them to T cells. The peptides recognized by the T cell receptors are denoted as epitopes and they trigger an immune response.

View Article and Find Full Text PDF

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC = 346.39 μM).

View Article and Find Full Text PDF

Despite the significant advancements in complex anticancer therapy, the search for new and more efficient specific anticancer agents remains a top priority in the field of drug discovery and development. Here, based on the structure-activity relationships (SARs) of eleven salicylaldehyde hydrazones with anticancer activities, we designed three novel derivatives. The compounds were tested in silico for drug-likeness, synthesized, and evaluated in vitro for anticancer activity and selectivity on four leukemic cell lines (HL-60, KE-37, K-562, and BV-173), one osteosarcomic cell line (SaOS-2), two breast adenocarcinomic cell lines (MCF-7 and MDA-MB-231), and one healthy cell line (HEK-293).

View Article and Find Full Text PDF

Breast cancer (BC) is the second leading cause of cancer death in women, with more than 600,000 deaths annually. Despite the progress that has been made in early diagnosis and treatment of this disease, there is still a significant need for more effective drugs with fewer side effects. In the present study, we derive QSAR models with good predictive ability based on data from the literature and reveal the relationships between the chemical structures of a set of arylsulfonylhydrazones and their anticancer activity on human ER+ breast adenocarcinoma and triple-negative breast (TNBC) adenocarcinoma.

View Article and Find Full Text PDF

The salt bridge is the strongest non-covalent interaction in nature and is known to participate in protein folding, protein-protein interactions, and molecular recognition. However, the role of salt bridges in the context of drug design has remained not well understood. Here, we report that a common feature in the mechanism of inhibition of the N-myristoyltransferases (NMT), promising targets for the treatment of protozoan infections and cancer, is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of the enzyme.

View Article and Find Full Text PDF

Hashimoto's thyroiditis is one of the most common endocrine disorders, affecting up to 20% of the adult population. No treatment or prevention exists except hormonal substitution for hypothyroidism. We hypothesize that it may be possible to selectively suppress anti-thyroglobulin (Tg) IgG antibody-producing B lymphocytes from HT patients by a chimeric protein molecule containing a monoclonal antibody specific for the human inhibitory receptor CR1, coupled to peptide epitopes derived from Tg protein.

View Article and Find Full Text PDF

Oxidative stress is an essential factor in the development and progression of Alzheimer's disease (AD). An excessive amount of reactive oxygen species (ROS) induces the peroxidation of lipid membranes, reduces the activity of antioxidant enzymes and causes neurotoxicity. In this study, we investigated the antioxidant and cholinesterase inhibitory potential of a novel galantamine-curcumin hybrid, named , administered orally in two doses (2.

View Article and Find Full Text PDF

N-myristoyltransferase (NMT) inhibitors that were initially developed for treatment of parasitic protozoan infections, including sleeping sickness, malaria, and leismaniasis, have also shown great promise as treatment for oncological diseases. The successful transition of NMT inhibitors, which are currently at preclinical to early clinical stages, toward clinical approval and utilization may depend on the development and design of a diverse set of drug molecules with particular selectivity or pharmacological properties. In our study, we report that a common feature in the inhibitory mechanism of NMT is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of an enzyme.

View Article and Find Full Text PDF

Cancer is the leading cause for human mortality together with cardiovascular diseases. Abl (Abelson) tyrosine kinases play a fundamental role in transducing various signals that control proliferation, survival, migration and invasion in several cancers such as Chronic Myeloid Leukemia (CML), breast cancer and brain cancer. For these reasons Abl tyrosine kinases are considered important biological targets in drug discovery.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity.

View Article and Find Full Text PDF

Drug design is a complex pharmaceutical science with a long history. Many achievements have been made in the field of drug design since the end of 19th century, when Emil Fisher suggested that the drug-receptor interaction resembles the key and lock interplay. Gradually, drug design has been transformed into a coherent and well-organized science with a solid theoretical background and practical applications.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effects of fructus extract (FSE), rich in flavonoids, on menopausal symptoms and bone health in ovariectomized rabbits over three months.
  • 3D CT scans and histopathological analysis showed that FSE helped recover bone microstructure, performing similarly to the drug zoledronic acid as a positive control.
  • The research indicates that key compounds in FSE, like daidzin and genistin, interact with estrogen receptors, suggesting FSE's potential as a preventive treatment for postmenopausal osteoporosis.
View Article and Find Full Text PDF

Staphylococcus aureus is a leading cause of community-acquired, healthcare-associated, and hospital-acquired infections. S. aureus bacteremia is a common and serious infection with significant morbidity and mortality in older patients.

View Article and Find Full Text PDF

Misfolded amyloid beta (Aβ) peptides aggregate and form neurotoxic oligomers. Membrane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are among the possible mechanisms of Aβ cytotoxicity. Galantamine (GAL) prevents apoptosis induced by Aβ mainly through the ability to stimulate allosterically the α7 nAChRs and to regulate the calcium cytosolic concentration.

View Article and Find Full Text PDF

The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Despite extensive and intensive research efforts in recent decades, there is still no effective treatment for neurodegenerative diseases. On this background, the use of drugs inhibiting the enzyme acetylcholinesterase (AChE) remains an eternal evergreen in the symptomatic treatment of mild to moderate cognitive impairments. Even more, the cholinergic hypothesis, somewhat forgotten in recent years due to the shift in focus on amyloid cascade, is back to life, and the search for new, more effective AChE inhibitors continues.

View Article and Find Full Text PDF

The acetylcholinesterase (AChE) inhibitors are the main drugs for symptomatic treatment of neurodegenerative disorders like Alzheimer's disease. A recently designed, synthesized and tested hybrid compound between the AChE inhibitor galantamine (GAL) and the antioxidant polyphenol curcumin (CU) showed high AChE inhibition in vitro. Here, we describe tests for acute and short-term toxicity in mice as well as antioxidant tests on brain homogenates measured the levels of malondialdehide (MDA) and glutathione (GSH) and in vitro DPPH, ABTS, FRAP and LPO inhibition assays.

View Article and Find Full Text PDF