Publications by authors named "Doyk Hwang"

Using trianisole heptazine (TAHz) as a monomeric analogue for carbon nitride, we performed ultrafast pump-photolysis-probe transient absorption (TA) spectroscopy on the intermediate TAHzH heptazinyl radical produced from an excited state PCET reaction with 4-methoxyphenol (MeOPhOH). Our results demonstrate an optically gated photolysis that releases H and regenerates ground state TAHz. The TAHzH radical signature at 520 nm had a lifetime of 7.

View Article and Find Full Text PDF

The excited-state proton transfer (ESPT) reaction is an important primary photochemical process because it is closely related to photophysical properties. Although ESPT research in aqueous solutions is predominant, alcoholic solvent-mediated ESPT studies are also significant in terms of photoacid-based reactions. Especially, the research for dihydroxynaphthalenes (DHNs) has been largely neglected due to the challenging data interpretation of two hydroxyl groups.

View Article and Find Full Text PDF

Heptazine is the molecular core of the widely studied photocatalyst carbon nitride. By analyzing the excited-state intermolecular proton-coupled electron-transfer (PCET) reaction between a heptazine derivative and a hydrogen-atom donor substrate, we are able to spectroscopically identify the resultant heptazinyl reactive radical species on a picosecond time scale. We provide detailed spectroscopic characterization of the tri-anisole heptazine:4-methoxyphenol hydrogen-bonded intermolecular complex (TAHz:MeOPhOH), using femtosecond transient absorption spectroscopy and global analysis, to reveal distinct product absorption signatures at ∼520, 1250, and 1600 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Spin-orbit coupling (SOC) plays a key role in various phenomena related to spintronics and topology in condensed matter systems, which can mimic in photonics.* -
  • This study focuses on photonic counterparts of SOC found in exciton-polaritons within specific microcavities made from birefringent lead halide perovskite crystals, showing how crystal structure and optical modes interact to create a unique gauge field.* -
  • As the density of exciton-polaritons increases, they experience phase transitions to different states, which highlights their ability to exhibit nonlinear behaviors and potentially function as quantum simulators for complex SOC interactions.*
View Article and Find Full Text PDF

We explore the photochemistry of polymeric carbon nitride (CN), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states.

View Article and Find Full Text PDF

Mineral-water interfaces play an important role in many natural as well as technological fields. Fundamental properties of these interfaces are governed by the presence of the interfacial water and its specific structure at the surface. Calcite is particularly interesting as a dominant rock-forming mineral in the earth's crust.

View Article and Find Full Text PDF

To better understand how hydrogen bonding influences the excited-state landscapes of aza-aromatic materials, we studied hydrogen-bonded complexes of 2,5,8-tris (4-methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz), a molecular photocatalyst related to graphitic carbon nitride, with a variety of phenol derivatives (R-PhOH). By varying the electron-withdrawing character of the para-substituent on the phenol, we can modulate the strength of the hydrogen bond. Using time-resolved photoluminescence, we extract a spectral component associated with the R-PhOH-TAHz hydrogen-bonded complex.

View Article and Find Full Text PDF

Rendering a high crystalline perovskite film is integral to achieve superior performance of perovskite solar cells (PSCs). Here, we established a two-dimensional liquid cage annealing system, a unique methodology for remarkable enhancement in perovskite crystallinity. During thermal annealing for crystallization, wet-perovskite films were suffocated by perfluorodecalin with distinctively low polarity, nontoxic, and chemically inert characteristics.

View Article and Find Full Text PDF

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass-produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low-temperature (LT) process.

View Article and Find Full Text PDF

We report a serendipitous discovery of light-induced generation of a circular microstructure on a glass surface. The microstructure has a ring shape with notable photophysical properties such as highly bright luminescence and strong resistance to photobleaching. We investigated the formation process as well as the luminescence properties of the micro ring to understand the origin of this peculiar phenomenon.

View Article and Find Full Text PDF

Excited state dynamics of common yellow dye quinophthalone (QPH) was probed by femtosecond transient absorption spectroscopy. Multi-exponential decay of the excited state and significant change of rate constants upon deuterium substitution indicate that uncommon nitrogen-to-oxygen excited state intramolecular proton transfer (ESIPT) occurs. By performing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, we found that adiabatic surface crossing between the S and S states takes place in the photoreaction.

View Article and Find Full Text PDF

There remains tremendous interest in perovskite solar cells (PSCs) in the solar energy field; the certified power conversion efficiency (PCE) now exceeds 20%. Along with research focused on enhancing PCE, studies are also underway concerning PSC commercialization. It is crucial to simplify the fabrication process and reduce the production cost to facilitate commercialization.

View Article and Find Full Text PDF

We synthesized a new organic fluorescent dye named resveratrone glucoside from the photoreaction of naturally-occurring phytoalexin compound resveratrol glucoside (resveratrol-3-β-mono-d-glucoside), which is abundant in various plants such as berries, herbs, nuts and grapes. Just like its predecessor molecule resveratrone that was previously discovered by our group, resveratrone glucoside possesses excellent optical properties including a high fluorescence quantum yield, a large Stokes' shift, and a large two-photon absorption cross section. In addition to these highly desirable properties, both fluorescent molecules can also be used as ideal bio-compatible organic fluorophores since they have remarkably low cytotoxicity, which we verified through our cell morphological study, trypan blue exclusion assay, Western blot analysis and fluorescence imaging of various live biological specimens.

View Article and Find Full Text PDF

Au/Ag hollow nanoshells (AuHNSs) were developed as multifunctional therapeutic agents for effective, targeted, photothermally induced drug delivery under near-infrared (NIR) light. AuHNSs were synthesized by galvanic replacement reaction. We further conjugated antibodies against the epidermal growth factor receptor (EGFR) to the PEGylated AuHNS, followed by loading with the antitumor drug doxorubicin (AuHNS-EGFR-DOX) for lung cancer treatment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvgg7h5215knt9qf3dpujisjrhjtthvg8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once