Publications by authors named "Doyeob Yeo"

Leak detection in nuclear reactor coolant systems is crucial for maintaining the safety and operational integrity of nuclear power plants. Traditional leak detection methods, such as acoustic emission sensors and spectroscopy, face challenges in sensitivity, response time, and accurate leak localization, particularly in complex piping systems. In this study, we propose a novel leak detection approach that incorporates a rigid guide tube into the insulation layer surrounding reactor coolant pipes and combines this with an advanced detection criterion based on Frequency Center of Gravity shifts and Signal-to-Noise Ratio analysis.

View Article and Find Full Text PDF

Anomaly detection systems based on artificial intelligence (AI) have demonstrated high performance and efficiency in a wide range of applications such as power plants and smart factories. However, due to the inherent reliance of AI systems on the quality of training data, they still demonstrate poor performance in certain environments. Especially in hazardous facilities with constrained data collection, deploying these systems remains a challenge.

View Article and Find Full Text PDF

This paper introduces the novel design and implementation of a low-power wireless monitoring system designed for nuclear power plants, aiming to enhance safety and operational efficiency. By utilizing advanced signal-processing techniques and energy-efficient technologies, the system supports real-time, continuous monitoring without the need for frequent battery replacements. This addresses the high costs and risks associated with traditional wired monitoring methods.

View Article and Find Full Text PDF

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology.

View Article and Find Full Text PDF

We propose a new teacherstudent framework (TSF)-based knowledge transfer method, in which knowledge in the form of dense flow across layers is distilled from a pre-trained "teacher" deep neural network (DNN) and transferred to another "student" DNN. In the case of distilled knowledge, multiple overlapped flow-based items of information from the pre-trained teacher DNN are densely extracted across layers. Transference of the densely extracted teacher information is then achieved in the TSF using repetitive sequential training from bottom to top between the teacher and student DNN models.

View Article and Find Full Text PDF