Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice.
View Article and Find Full Text PDFPax transactivation domain-interacting protein (PTIP) is a ubiquitously expressed, nuclear protein that is part of a histone H3K4 methyltransferase complex and is essential for embryonic development. Methylation of H3K4 is an epigenetic mark found on many critical developmental regulatory genes in embryonic stem (ES) cells and, together with H3K27 methylation, constitutes a bivalent epigenetic signature. To address the function of PTIP in ES cells, we generated ES cell lines from a floxed ptip allele and deleted PTIP function with Cre recombinase.
View Article and Find Full Text PDFThe MLL family of histone methyltransferases maintains active chromatin domains by methylating histone H3 on lysine 4 (H3K4). How MLL complexes recognize specific chromatin domains in a temporal and tissue-specific manner remains unclear. We show that the DNA-binding protein PAX2 promotes assembly of an H3K4 methyltransferase complex through the ubiquitously expressed nuclear factor PTIP (pax transcription activation domain interacting protein).
View Article and Find Full Text PDFThe RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate.
View Article and Find Full Text PDFPTIP, a protein with tandem BRCT domains, has been implicated in DNA damage response. However, its normal cellular functions remain unclear. Here we show that while ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, endogenous PTIP, and a novel protein PA1 are both components of a Set1-like histone methyltransferase (HMT) complex that also contains ASH2L, RBBP5, WDR5, hDPY-30, NCOA6, SET domain-containing HMTs MLL3 and MLL4, and substoichiometric amount of JmjC domain-containing putative histone demethylase UTX.
View Article and Find Full Text PDFPax transactivation-domain interacting protein (PTIP) is a widely expressed nuclear protein that is essential for early embryonic development. PTIP was first identified on the basis of its interactions with the developmental regulator Pax2 but can also bind to other nuclear transcription factors. The Pax2 protein is essential for development of the renal epithelia and for regulating the response of mature collecting ducts to hyperosmotic stress.
View Article and Find Full Text PDFJ Am Soc Nephrol
December 2005
Embryonic stem (ES) cells have been induced to differentiate in vitro into a broad spectrum of specialized cell types, including hematopoietic, pancreatic, and neuronal cell types. Such ES-derived cells can provide a valuable source of progenitor cell types. Whereas undifferentiated ES cells can become integrated into a developing kidney and contribute to tubular epithelia, the ability to generate renal precursor cells in vitro has not been reported.
View Article and Find Full Text PDFBackground: Metallothionein isoform 3 (MT-3) is expressed in the proximal tubule cells of the human kidney. The goal of the present study was to further characterize the basal expression of MT-3 in the proximal tubule and to determine if MT-3 participates in the maintenance of proximal tubule cell function.
Methods: Expression of MT-3 mRNA was determined in the intact proximal tubule using microdissection and reverse transcription-polymerase chain reaction (RT-PCR).
Cadmium (Cd(+2)) has been shown to transiently increase the expression of mRNA for the third isoform of the metallothionein (MT-3) gene family in cultured human proximal tubule (HPT) cells. The goal of the present study was to further define the expression of MT-3 in mortal (HPT) and immortal (HK-2) cultures of HPT cells when exposed to lethal and sub-lethal concentrations of Cd(+2) under both acute and chronic time periods of exposure. Expression of MT-3 mRNA and protein was determined in cultured HPT cells and HK-2 cells using reverse-transcription-polymerase chain reaction (RT-PCR) and immuno-blotting, and expression of c-fos, c-jun and c-myc mRNA by RT-PCR.
View Article and Find Full Text PDF