Naunyn Schmiedebergs Arch Pharmacol
January 2024
The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone.
View Article and Find Full Text PDFReactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress.
View Article and Find Full Text PDFReactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress.
View Article and Find Full Text PDFLarge epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout () mice.
View Article and Find Full Text PDFDeficiency of nitric oxide (NO) and oxidative stress can be a cause, a consequence, or, more often, a potentiating factor for hypertension and hypertensive renal disease. Both NO and superoxide anions are radical molecules that interact with each other, leading to oxidative damage of such organs as the kidney. In the present study, we investigated the effect of chronic-specific (neuronal NOS inhibition) and nonspecific NOS inhibition on the oxidative state and antioxidant response and associated oxidative damage of the kidney of young normotensive and hypertensive rats.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor and nutrition factor which takes part in the cellular signaling by several agonists such as pioglitazone. PPARγ can serve as potential target in treatments of metabolic syndrome diseases and/or hypertension. In the present study we investigated the effects of pioglitazone, a PPARγ agonist, on hypertension development in young and adult borderline hypertensive rats (BHR).
View Article and Find Full Text PDFInhibition of nitric oxide (NO) production can influence blood pressure regulation and increase hypertension. Asymmetric dimethylarginine, ADMA, an analogue of L-arginine, can inhibit NO synthesis, impair endothelial function, and is a risk marker of cardiovascular diseases. Homocysteine (Hcy) level affects oxidative stress production of reactive oxygen species (ROS) in hypertension and also influences changes in signaling and cell damage.
View Article and Find Full Text PDFAlthough the role of nitric oxide (NO) in essential hypertension is still unclear, the effects of long-term NO deficiency have not yet been investigated during the critical juvenile period in spontaneously hypertensive rats (SHR). We aimed to analyze the effects of chronic NO synthase (NOS) inhibition on systolic blood pressure (sBP), vasoactivity, morphological changes and superoxide level in the thoracic aorta (TA), NOS activity in different tissues, and general biomarkers of oxidative stress in plasma of young SHR. Four-week-old SHR were treated with N-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day, p.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear receptor. It plays an important role in kidney physiology, where it might contribute to arterial blood pressure regulation and hypertension development by modulation of several signaling pathways. In our study we focused on the effect of PPARγ agonist pioglitazone on changes in the nitric oxide synthase (NOS) expression and activity, the renin-angiotensin system (RAS) cascade, and redox homeostasis signaling pathways in the renal cortex of young pre hypertensive rat models.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPAR) belong to the nuclear superfamily of ligand-activated transcription factors. PPARgamma acts as a nutrient sensor that regulates several homeostatic functions. Its disruption can lead to vascular pathologies, disorders of fatty acid/lipid metabolism and insulin resistance.
View Article and Find Full Text PDFMechanisms underlying atrial fibrillation (AF), the most common cardiac arrhythmia, particularly in aged population, are not fully elucidated. We have previously shown an increased propensity of old guinea pigs (GPs) heart to inducible AF when comparing to young animals. This study aimed to verify our hypothesis that susceptibility of aged heart to AF may be attributed to abnormalities in myocardial connexin-43 (Cx43) and extracellular matrix that affect cardiac electrical properties.
View Article and Find Full Text PDFThe oxidative stress plays an important role in the development of cardiovascular diseases (CVD). In CVD progression an aberrant redox regulation was observed. In this regulation levels of reactive oxygen species (ROS) play an important role in cellular signaling, where Nrf2 is the key regulator of redox homeostasis.
View Article and Find Full Text PDFActivation of nuclear factor-κB (NF-κB) by increased production of reactive oxygen species (ROS) might induce transcription and expression of different antioxidant enzymes and also of nitric oxide synthase (NOS) isoforms. Thus, we aimed at studying the effect of NF-κB inhibition, caused by JSH-23 (4-methyl-N (1)-(3-phenyl-propyl)-benzene-1,2-diamine) injection, on ROS and NO generation in hereditary hypertriglyceridemic (HTG) rats. 12-week-old, male Wistar and HTG rats were treated with JSH-23 (bolus, 10 μmol, i.
View Article and Find Full Text PDFQuercetin (QCT) is flavonoid that possesses various biological functions including anti-oxidative and radical-scavenging activities. Moreover, QCT exerts some preventive actions in treatment of cardiovascular diseases. The aim of present study was to explore effects of prolonged administration of QCT on changes induced by repeated application of doxorubicin (DOX) in rat hearts.
View Article and Find Full Text PDFThe photoeffect of new proflavine derivatives with DNA-binding and antitumour activities, 3,6-bis((1-alkyl-5-oxo-imidazolidin-2-yliden)imino)acridine hydrochlorides (AcrDIMs), was studied to evaluate them as potential photosensitizers for photodynamic antitumor therapy. EPR measurements showed that superoxide radical anion and singlet oxygen were produced upon irradiation of AcrDIMs with UV-A light (>300nm) in the presence of molecular oxygen. This indicates that AcrDIMs may act as photosensitizers.
View Article and Find Full Text PDFWhile the unequivocal pattern of endothelial nitric oxide synthase (eNOS) inhibition in cardiovascular control is recognized, the role of NO produced by neuronal NOS (nNOS) remains unclear. The aim of this study was to compare the effects of chronic treatment with 7-nitroindazole (7-NI, nNOS inhibitor) and N(G)-nitro-L-arginine methylester (L-NAME, general and predominantly eNOS inhibitor) on cardiovascular system of young normotensive rats. Wistar rats (4 weeks old) were used: controls and rats administered either 7-NI (10 mg/kg bw/day) or L-NAME (50 mg/kg bw/day) in drinking water for 6 weeks.
View Article and Find Full Text PDFMetabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS.
View Article and Find Full Text PDFThis study investigated the influence of chronic crowding stress on nitric oxide (NO) production, vascular function and oxidative status in young Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) female rats. Five-week old rats were exposed to crowding for two weeks. Crowding elevated plasma corticosterone (P<0.
View Article and Find Full Text PDFPPAR γ receptor plays an important role in oxidative stress response. Its agonists can influence vascular contractility in experimental hypertension. Our study was focused on the effects of a PPAR γ agonist pioglitazone (PIO) on blood pressure regulation, vasoactivity of vessels, and redox-sensitive signaling at the central (brainstem, BS) and peripheral (left ventricle, LV) levels in young prehypertensive rats.
View Article and Find Full Text PDFReactive oxygen species (ROS) are products of normal cellular metabolism and derive from various sources in different cellular compartments. Oxidative stress resultant from imbalance between ROS generation and antioxidant defense mechanisms is important in pathogenesis of cardiovascular diseases, such as hypertension, heart failure, atherosclerosis, diabetes, and cardiac hypertrophy. In this review we focus on hypertension and address sources of cellular ROS generation, mechanisms involved in regulation of radical homeostasis, superoxide dismutase isoforms in pathophysiology of hypertension; as well as radical intracellular signaling and phosphorylation processes in proteins of the affected cardiovascular tissues.
View Article and Find Full Text PDFJ Physiol Pharmacol
April 2013
Nitric oxide (NO) is produced in the endothelium in response to vasorelaxants, such as acetylcholine, and acts on vascular smooth muscle cells to induce vasorelaxation. Previously, we found that the smooth muscle of endothelium-denuded arteries expresses functional NO synthase. We hypothesized that the destruction of arterial anatomical integrity induced by denuding arteries of their endothelial layers causes the vessels to become insensitive to vasodilators as a consequence of oxidative stress.
View Article and Find Full Text PDFWe aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE) and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day) for 3 weeks.
View Article and Find Full Text PDFAim: To investigate the role of matrix metalloproteinases (MMPs) in the responses of rats to a prolonged doxorubicin (DOX) treatment.
Methods: Male Wistar rats were used. DOX was administered by intraperitoneal injections of seven doses (cumulative dose was 15 mg/kg).
Objectives: This paper reviews and compares major approaches and strategies to modulation of antioxidative response in the therapy of hypertension and cardiovascular diseases.
Design: There are two major strategies of modulation of antioxidative response in hypertension and cardiovascular diseases: (i) modulation of NO levels by NOS stimulation, increase of NO bioavailability, administration of NO, and NOS gene incorporation; (ii) scavenging of superoxide and suppression of oxidative stress by activation of antioxidant gene expression or by suppression of selected genes by RNA silencing. These strategies are accomplished by several concepts, including (1) delivery of external agents, (2) antioxidant gene therapy and RNA silencing, and (3) combined therapies and approaches.