Publications by authors named "Dovillaire G"

X-ray wavefront measurement is an important beam diagnostic tool, especially for the diffraction-limited X-ray beam. These in situ diagnostics give a better understanding of beam imperfections, and they enable feedback for possible corrections and/or optical alignment improvements. Hartmann wavefront sensing is one of the promising techniques to perform in situ X-ray wavefront measurements.

View Article and Find Full Text PDF

Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light-matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor.

View Article and Find Full Text PDF

We describe the development of specific measurement protocols to improve the accuracy of surface metrology of x-ray mirrors using a dedicated commercial instrument based on wavefront sensing techniques. This instrument, SHARPeR, uses measurements from a Shack-Hartmann wavefront sensor combined with a sub-aperture stitching method to provide two-dimensional maps of the surface slope errors and can measure curved mirrors above 1 m radii. In this paper, we describe the results of measurement methods developed on a SHARPeR system installed at the European Synchrotron (ESRF) to reduce the contribution of systematic errors to measurements of strongly curved spherical and aspherical x-ray mirrors with intrinsic slope errors of the order of 100-200 nrad rms.

View Article and Find Full Text PDF

For more than 15 years, Imagine Optic have developed Extreme Ultra Violet (EUV) and X-ray Hartmann wavefront sensors for metrology and imaging applications. These sensors are compatible with a wide range of X-ray sources: from synchrotrons, Free Electron Lasers, laser-driven betatron and plasma-based EUV lasers to High Harmonic Generation. In this paper, we first describe the principle of a Hartmann sensor and give some key parameters to design a high-performance sensor.

View Article and Find Full Text PDF

Wavefront analysis is a fast and reliable technique for the alignment and characterization of optics in the visible, but also in the extreme ultraviolet (EUV) and X-ray regions. However, the technique poses a number of challenges when used for optical systems with numerical apertures (NA) > 0.1.

View Article and Find Full Text PDF

Optical beams carrying orbital angular momentum are a very active field of research for their prospective applications, especially at short wavelengths. We consider here such beams produced through high-harmonic generation (HHG) in a rare gas and analyze the characterization of their high-charge vortex structure by an extreme ultraviolet Hartmann wavefront sensor. We show that such HHG beams are generally composed of a set of numerous vortex modes.

View Article and Find Full Text PDF

We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation.

View Article and Find Full Text PDF

This article describes the development and testing of a novel, water-cooled, active optic mirror system (called "REAL: Resistive Element Adjustable Length") that combines cooling with applied auxiliary heating, tailored to the spatial distribution of the thermal load generated by the incident beam. This technique is theoretically capable of sub-nanometer surface figure error control even at high power density. Tests conducted in an optical metrology laboratory and at synchrotron X-ray beamlines showed the ability to maintain the mirror profile to the level needed for the next generation storage rings and FEL mirrors.

View Article and Find Full Text PDF

Today, 3D imaging techniques are emerging, not only as a new tool in early drug discovery but also for the development of potential therapeutics to treat disease. Particular efforts are directed towards in vivo physiology to avoid perturbing the system under study. Here, we assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis.

View Article and Find Full Text PDF

High-quality in-depth imaging of three-dimensional samples remains a major challenge in modern microscopy. Selective plane illumination microscopy (SPIM) is a widely used technique that enables imaging of living tissues with subcellular resolution. However, scattering, absorption, and optical aberrations limit the depth at which useful imaging can be done.

View Article and Find Full Text PDF

We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors.

View Article and Find Full Text PDF

We demonstrate for the first time, to the best of our knowledge, the ability of extreme ultraviolet (XUV) Hartmann wavefront sensors to characterize high charge vortex beams produced by high-order harmonic generation up to the order of 25. We also show that phase matched absorption limited high harmonic generation is able to maintain the high charge vortex structure of the XUV beam even in a rather long (1 cm) generation medium.

View Article and Find Full Text PDF

Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization.

View Article and Find Full Text PDF

We report on the shot-to-shot stability of intensity and spatial phase of high-harmonic generation (HHG). The intensity stability is measured for each high-harmonic (HH) order with a spectrometer. Additionally, the spatial phase is measured with an XUV wavefront sensor for a single HH order measured in a single shot, which according to our knowledge was not reported before with a Hartmann wavefront sensor.

View Article and Find Full Text PDF

We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms.

View Article and Find Full Text PDF

We present what we believe to be the first automatic alignment of a synchrotron beamline by the Hartmann technique. Experiments were performed, in the soft-x-ray range (E=3 keV, lambda=0.414 nm), by using a four-actuator Kirkpatrick-Baez (KB) active optic.

View Article and Find Full Text PDF

We report, for the first time to our knowledge, experimental demonstration of wave-front analysis via the Hartmann technique in the extreme ultraviolet range. The reference wave front needed to calibrate the sensor was generated by spatially filtering a focused undulator beam with 1.7- and 0.

View Article and Find Full Text PDF