Publications by authors named "Douwe S Zijlstra"

Aromatic monomers obtained by selective depolymerization of the lignin β-O-4 motif are typically phenolic and contain (oxygenated) alkyl substitutions. This work reveals the potential of a one-pot catalytic lignin β-O-4 depolymerization cascade strategy that yields a uniform set of methoxylated aromatics without alkyl side-chains. This cascade consists of the selective acceptorless dehydrogenation of the γ-hydroxy group, a subsequent retro-aldol reaction that cleaves the C-C bond, followed by in situ acceptorless decarbonylation of the formed aldehydes.

View Article and Find Full Text PDF

European aspen ( (L.) ()) bark is a promising raw material in multi-step biorefinery schemes due to its wide availability and higher content of secondary metabolites in comparison to stem wood biomass. The main objective of this study was to investigate the major cell wall component-enriched fractions that were obtained from aspen bark residue after extractives isolation, primarily focusing on integration of separated lignin fractions and cellulose-enriched bark residue into complex valorization pathways.

View Article and Find Full Text PDF

Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications.

View Article and Find Full Text PDF

Current lignin fractionation methods use harsh conditions that alter the native lignin structure, resulting in a recalcitrant material which is undesired for downstream processing. Milder fractionation processes allow for the isolation of lignins that are high in β-aryl ether (β-O-4) content, however, at reduced extraction efficiency. The development of improved lignin extraction methods using mild conditions is therefore desired.

View Article and Find Full Text PDF

Lignin valorization strategies are a key factor for achieving more economically competitive biorefineries based on lignocellulosic biomass. Most of the emerging elegant procedures to obtain specific aromatic products rely on the lignin substrate having a high content of the readily cleavable β-O-4 linkage as present in the native lignin structure. This provides a miss-match with typical technical lignins that are highly degraded and therefore are low in β-O-4 linkages.

View Article and Find Full Text PDF

Water addition to α,β-unsaturated nitriles would give facile access to the β-hydroxy-nitriles, which in turn can be hydrogenated to the γ-amino alcohols. We have previously shown that alcohols readily add in 1,4-fashion to these substrates using Milstein's Ru(PNN) pincer complex as catalyst. However, attempted water addition to α,β-unsaturated nitriles gave the 3-hydroxynitriles in mediocre yields.

View Article and Find Full Text PDF

An unprecedented catalytic pathway for oxa-Michael addition reactions of alcohols to unsaturated nitriles has been revealed using a PNN pincer ruthenium catalyst with a dearomatized pyridine backbone. The isolation of a catalytically competent Ru-dieneamido complex from the reaction between the Ru catalyst and pentenenitrile in combination with DFT calculations supports a mechanism in which activation of the nitrile through metal-ligand cooperativity is a key step. The nitrile-derived Ru-N moiety is sufficiently Brønsted basic to activate the alcohol and initiate conjugate addition of the alkoxide to the α,β-unsaturated fragment.

View Article and Find Full Text PDF