Cerebral palsy (CP) is defined as permanent disorders of movement and posture. Prematurity and hypoxia-ischemia (HI) are risk factors of CP, and boys display a greater vulnerability to develop CP. Magnesium sulfate (MgSO) is administered to mothers at risk of preterm delivery as a neuroprotective agent.
View Article and Find Full Text PDFA role of the gut microbiota in psychiatric disorders is supported by a growing body of literature. The effects of a probiotic mixture of four bacterial strains were studied in two models of anxiety and depression, naturally stress-sensitive Fischer rats and Long Evans rats subjected to maternal deprivation. Rats chronically received either the probiotic mixture (1.
View Article and Find Full Text PDFCerebral lesions acquired in the perinatal period can induce cerebral palsy (CP), a multifactorial pathology leading to lifelong motor and cognitive deficits. Several risk factors, including perinatal hypoxia-ischemia (HI), can contribute to the emergence of CP in preterm infants. Currently, there is no international consensus on treatment strategies to reduce the risk of developing CP.
View Article and Find Full Text PDFMagnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery is proposed as a neuroprotective strategy against neurological alterations such as cerebral palsy in newborns. However, long-term beneficial or adverse effects of MgSO4 and sex-specific sensitivity remain to be investigated. We conducted behavioral and neurochemical studies of MgSO4 effects in males and females, from the perinatal period to adolescence in a mouse model of cerebral neonatal lesion.
View Article and Find Full Text PDFKetamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, widely used as an anesthetic in neonatal pediatrics, is also an illicit drug named Super K or KitKat consumed by teens and young adults. In the immature brain, despite several studies indicating that NMDA antagonists are neuroprotective against excitotoxic injuries, there is more and more evidence indicating that these molecules exert a deleterious effect by suppressing a trophic function of glutamate. In the present study, we show using Gad67-GFP mice that prenatal exposure to ketamine during a time-window in which GABAergic precursors are migrating results in (i) strong apoptotic death in the ganglionic eminences and along the migratory routes of GABAergic interneurons; (ii) long-term deficits in interneuron density, dendrite numbers and spine morphology; (iii) a sex-dependent deregulation of γ-aminobutyric acid (GABA) levels and GABA transporter expression; (iv) sex-dependent changes in the response to glutamate-induced calcium mobilization; and (v) the long-term sex-dependent behavioral impairment of locomotor activity.
View Article and Find Full Text PDFIntracerebral-intraventricular hemorrhages (ICH/IVH) in very preterm neonates are responsible for high mortality and subsequent disabilities. In humans, tissue plasminogen activator (t-PA) initiates fibrinolysis and activates endoluminal-endothelial receptors; dysfunction of the t-PA inhibitor (PAI-1) results in recurrent hemorrhages. We used PAI-1 knockout (PAI-1) mice to examine the role of t-PA in age-dependent intracranial hemorrhages as a possible model of preterm ICH/IVH.
View Article and Find Full Text PDFPreviously, we showed that maternal deprivation (MD) (3h/day, postnatal-day 1-14) impaired the performance at adulthood in the object temporal order memory task (TMT) that principally implicates the medial prefrontal cortex (mPFC). Dopamine (DA) transmission in the PFC may play a critical role in the achievement of the TMT. Here, to investigate whether MD could results in dysfunction of the DA system in the mPFC, we assessed in this region the tissue contents and extracellular levels of DA and its metabolites, as the density of D1 receptor.
View Article and Find Full Text PDFNociceptin/Orphanin FQ is the endogenous ligand of NOP receptor, formerly referred to as the Opioid Receptor-Like 1 receptor. We have previously shown that NOP receptors were located on serotonergic neurons in the rat dorsal raphe nucleus, suggesting possible direct interactions between nociceptin and serotonin in this region, which is a target for antidepressant action. In the present study, we investigated further the link between Selective Serotonin Reuptake Inhibitor (SSRI) antidepressant treatments and the nociceptin/NOP receptor system.
View Article and Find Full Text PDFChronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease induces in time numerous side effects, such as abnormal involuntary movements called L-DOPA-induced dyskinesias (LIDs). An involvement of glutamate transmission, dopamine transmission and opioid transmission in striatal output pathways has been hypothesized for the induction of LIDs. Interestingly, our previous experiments indicated that some striatal δ-opioid receptors are located on terminals of glutamatergic corticostriatal neurons and that stimulation of these receptors modulates the release of glutamate and dopamine.
View Article and Find Full Text PDFGastric electrical stimulation (GES) is a new therapeutic option for functional dyspepsia and gastroparesis. In addition to ameliorating nausea and vomiting, GES results in improved appetite which is not always associated with accelerated gastric emptying. To explore the central and peripheral factors underlying GES-associated improvement of appetite we developed a GES model in anaesthetized Wistar rats.
View Article and Find Full Text PDFRecent data indicate that striatal dopamine release induced by stimulation of delta-opioid receptors is a consequence of glutamate release. However, glial cells, which mainly support glutamate uptake and are involved in glutamate signaling and potentially express delta-opioid receptors, could participate to this effect. The present study investigates the contribution of glial cells in the releasing effects of [d-Pen2, d-Pen5]-enkephalin (DPDPE) by using the gliotoxin l-alpha-aminoadipate (l-alpha AA).
View Article and Find Full Text PDFIn this work, previously published and unpublished results on biological activity of Hypericum caprifoliatum, a native species to South Brazil, are presented. Lipophilic extracts obtained from this species showed an antidepressant-like activity in mice and rat forced swimming test. Results from in vivo experiments suggest an effect on the dopaminergic transmission.
View Article and Find Full Text PDFWe have previously shown that striatal dopamine release induced locally by a delta-opioid receptor agonist was totally inhibited by a glutamate N-methyl-D-aspartate receptor antagonist, indicating the involvement of glutamatergic receptors in this effect. The aim of the present study was to specify this mechanism. Firstly, we investigated the effect of [D-Pen2,D-Pen5]-enkephalin (DPDPE) on glutamate release in rats by intrastriatal microdialysis.
View Article and Find Full Text PDFThis work was carried out in order to evaluate the in vitro and in vivo toxicity of 3,4-dihydroxyphenylacetaldehyde (DOPAL). This aldehyde is formed from dopamine (DA) by monoamine oxidases (MAO) and is mainly oxidised to 3,4-dihydroxyphenylacetic acid by brain aldehyde dehydrogenases (ALDH), or eventually reduced to 3,4-dihydroxyphenylethanol by aldose/aldehyde reductases. In vitro, catecholaminergic SH-SY5Y cells were incubated with DA and disulfiram (DSF), an irreversible inhibitor of ALDH.
View Article and Find Full Text PDFThis work was carried out to evaluate the potential in vivo toxicity of 3,4-dihydroxyphenylacetaldehyde (DOPAL), an aldehyde formed from dopamine by monoamine oxidase (MAO) that is oxidised mainly to 3,4-dihydroxyphenylacetic acid (DOPAC) by brain aldehyde dehydrogenases (ALDH). In this study, male Sprague-Dawley rats were treated with levodopa (L-dopa)-benserazide, which increases DOPAL production by MAO, and disulfiram, an irreversible inhibitor of ALDH, which reduces the formation of DOPAC from DOPAL. An acute systemic intraperitoneal (i.
View Article and Find Full Text PDFBrain Res Cogn Brain Res
March 2000
The effects of contextual fear conditioning on the release of acetylcholine (ACh) in the hippocampus of freely moving rats was assessed using microdialysis. Measures were carried out during both acquisition and retention testing (re-exposure to the conditioning chamber) and compared between animals that either received foot-shocks as unconditioned stimulus (conditioned group) or no foot-shocks (control group) during acquisition. Results showed that during acquisition, hippocampal ACh extracellular level was increased with respect to baseline but that this increase was of similar magnitude in both groups.
View Article and Find Full Text PDFWe have compared the effects of an i.p. pretreatment with L-DOPA (200 mg/kg) associated with benserazide (25 mg/kg) on neurotoxic effects of either 6-hydroxydopamine (6-OHDA) (50 microg, 10 microl per mouse) or 1-methyl-4-phenylpyridinium (MPP+) (17.
View Article and Find Full Text PDFThe specific dopamine uptake inhibitor, GBR 12783 was tested on the retention performance of a one-trial passive avoidance test. For a moderate electric shock intensity, GBR 12783 (10 mg/kg), injected before acquisition session, improved retention performance. Scopolamine (0.
View Article and Find Full Text PDFBackground: Discrepancies in the biochemical research on negative symptoms in schizophrenia may be ascribed to the lack of differentiation into primary and secondary negative symptoms. We have used Carpenter's criteria to define the deficit syndrome of schizophrenia as the presence of enduring and primary negative symptoms and measured catecholaminergic parameters in deficit as compared with nondeficit schizophrenics.
Methods: We have investigated plasma homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG) concentrations in 34 DSM-III-R neuroleptic-treated schizophrenic patients who were classified into deficit (n = 14) and nondeficit (n = 20) forms of schizophrenia.
Neuropharmacology
July 1997
The neurotoxin methyl phenyl pyridinium (MPP+) was administered intracerebroventricularly (i.c.v.
View Article and Find Full Text PDFThe involvement of striatal cholinergic neurons in the release of dopamine (DA) elicited by the mu-opioid receptor agonist DAGO ([D-Ala2, NMePhe4-Gly5(ol)]enkephalin) was explored. The striatal release of DA was measured by microdialysis in rats anesthetized with chloral hydrate. When infused in the striatum, through the microdialysis probe, DAGO increased the extracellular levels of DA.
View Article and Find Full Text PDFWe examined whether there are clinical or biological differences in chronic schizophrenic patients sharing a rare variant allele (a perfect ten tetranucleotide repeats allele of the human TH01 microsatellite) in the tyrosine hydroxylase (TH) gene. For that purpose, clinical parameters (PANSS subscores) and plasma measurements (homovanillic acid and 3-methoxy-4-hydroxy-phenylglycol (MHPG)) were analyzed in five schizophrenic patients sharing the rare allele and 19 schizophrenic patients who did not possess this allele. The mean concentration of plasma HVA and plasma MHPG were significantly lower in the group of schizophrenic patients sharing the rare allele.
View Article and Find Full Text PDFEur J Pharmacol
March 1994
In anesthetized rats, the intrastriatal infusion of the delta-opioid receptor agonist, [D-Pen2,D-Pen5]enkephalin, increased the extracellular concentration of dopamine. This effect was abolished by the NMDA receptor antagonist, 3-[(+/-)-2-carboxypiperazine-4-yl]propyl-1-phosphonate, but was unchanged by the AMPA (D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) and kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. This suggests that the dopamine release induced by the delta-opioid agonist depends critically on the involvement of glutamatergic transmission via NMDA receptors.
View Article and Find Full Text PDF