Publications by authors named "Dounighi N"

Background: Nanoparticles have received more and more attention in the vaccine and drug delivery systems field due to their specific properties. In particular, alginate and chitosan have been known as the most promising nano-carries. Digoxin-specific antibodies effectively manage acute and chronic digitalis poisoning using sheep antiserum.

View Article and Find Full Text PDF

Background: Outer membrane vesicles (OMVs) release from Gram-negative bacteria and are interesting alternatives that can replace those vaccines that contain naturally incorporated bacterial surface antigens, lipopolysaccharides (LPS) and outer membrane proteins (OMPs). Nanoparticles can be used to encapsulate vesicles for slow release and prevent macromolecular degradation.

Objective: Therefore, encapsulation of OMVs of B.

View Article and Find Full Text PDF

In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses.

View Article and Find Full Text PDF

Background: We investigated the hemodynamic changes (Inotropic, chronotropic and arrhythmogenic) in intravenously envenomed anesthetized rats with venom. The neutralizing potencies of different drugs and commercial antivenom were assessed simultaneously.

Methods: Different doses of the crude venom (100, 200 and 400μg/rat) were injected during five minutes via the femoral vein and cardiovascular changes were recorded in rats in Razi Institute Corporation, Karaj, Iran in 2017.

View Article and Find Full Text PDF

In this study chitosan nanoparticles (CS NPs) and mannosylated chitosan nanoparticles (MCH NPs) loaded with recombinant hepatitis B surface antigen (rHBsAg) was synthesized as a vaccine delivery system and assessed toxically and immunologically. The physicochemical properties of the nanoparticles (NPs) were determined by methods including scanning electron microscope (SEM) and dynamic light scattering (DLS). The morphology of the NPs was semi spherical and the average diameter of the loaded CS and MCH NPs was found to be 189 and 239 nm, respectively.

View Article and Find Full Text PDF

Unlabelled: Effectiveness of the whole-cell pertussis vaccine is apparent, but improvement in the quality of the vaccine is necessary to achieve strong immunogenicity with a low bacterial number content.

Method: Inactivated Bordetella pertussis (B. pertussis) cells entrapped microspheres were prepared via an emulsification method and analyzed for morphology, size, size distribution, loading efficiency, loading capacity, release kinetic, in vivo cytokines and antigen specific antibody subclasses.

View Article and Find Full Text PDF

There is no doubt about the whole cell pertussis vaccine efficacy, but it is necessary to improve the vaccine quality specially to decrease its toxicity by obtaining good immunogenicity with low bacterial content. In this work, under optimum condition inactivated B. pertussis bacteria cells entrapped with alginate microparticles were fabricated and in vivo immunogenicity and ptency of new microparticle based vaccine were evaluated in mice.

View Article and Find Full Text PDF

Oral vaccination is the preferred route of immunization. However, the degradative condition of the gastrointestinal tract and the higher molecular size of peptides pose major challenges in developing an effective oral vaccination system. One of the most excellent methods used in the development of oral vaccine delivery system relies on the entrapment of the antigen in polymeric nanoparticles.

View Article and Find Full Text PDF

Chicken egg yolk antibodies against Vipera lebetina venom were evaluated for their antivenom potential. White leghorn hens were immunized with detoxified V. lebetina venom (γ-irradiated venom).

View Article and Find Full Text PDF

A combined process of ammonium sulfate precipitation (salting out) and ion-exchange chromatography on DEAE-Sepharose CL-6B was used to prepare camel antivenom (IgG) against Naja Naja Oxiana for therapy. In the ammonium sulfate precipitation, the best condition for fractionation of IgG from the other proteins in camel serum was 55% precipitate. The camel IgG presented as 2 bands with molecular masses of 250 and 100 kDa, the latter corresponding to heavy chain IgG, on 10% gel electrophoresis.

View Article and Find Full Text PDF

During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines.

View Article and Find Full Text PDF