Publications by authors named "Douguo Zhang"

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Single-particle tracking (SPT) is an immensely valuable technique for studying a variety of processes in the life sciences and physics. It can help researchers better understand the positions, paths, and interactions of single objects in systems that are highly dynamic or require imaging over an extended time. Here, we propose an all-dielectric one-dimensional photonic crystal (1D PC) that enhances spin-to-orbital angular momentum conversion for three-dimensional (3D) SPTs.

View Article and Find Full Text PDF

Label-free optical imaging of single-nanometer-scale matter is extremely important for a variety of biomedical, physical, and chemical investigations. One central challenge is that the background intensity is much stronger than the intensity of the scattering light from single nano-objects. Here, we propose an optical module comprising cascaded momentum-space polarization filters that can perform vector field modulation to block most of the background field and result in an almost black background; in contrast, only a small proportion of the scattering field is blocked, leading to obvious imaging contrast enhancement.

View Article and Find Full Text PDF

Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CHCOO) or Mg(CHCOO) aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH) or Mg(OH)) under high RH conditions.

View Article and Find Full Text PDF

We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber.

View Article and Find Full Text PDF

Optical microscopy with a diffraction limit cannot distinguish nanowires with sectional dimensions close to or smaller than the optical resolution. Here, we propose a scheme to retrieve the subwavelength cross-section of nanowires based on the asymmetric excitation of Bloch surface waves (BSWs). Leakage radiation microscopy is used to observe the propagation of BSWs at the surface and to collect far-field scattering patterns in the substrate.

View Article and Find Full Text PDF

The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO) and Mg(NO) separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging.

View Article and Find Full Text PDF

Analog spatial differentiation is used to realize edge-based enhancement, which plays an important role in data compression, microscopy, and computer vision applications. Here, a planar chip made from dielectric multilayers is proposed to operate as both first- and second-order spatial differentiator without any need to change the structural parameters. Third- and fourth-order differentiations that have never been realized before, are also experimentally demonstrated with this chip.

View Article and Find Full Text PDF

Conventional total internal reflection fluorescence (TIRF) microscopy requires either an oil-immersed objective with high numerical aperture or a bulky prism with high refractive index to generate the evanescent waves that work as the illumination source for fluorophores. Precise alignment of the optical path is necessary for optimizing the imaging performance of TIRF microscopy, which increases the operation complexity. In this Letter, a planar photonic chip composed of a dielectric multilayer and a scattering layer is proposed to replace the TIRF objective or the prism.

View Article and Find Full Text PDF

When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire.

View Article and Find Full Text PDF

A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. We demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations.

View Article and Find Full Text PDF

The guided-modes of Bloch surface waves, such as the transverse electric modes (TE00 and TE01 modes), can simultaneously exist in a low-refractive-index ridge waveguide with subwavelength thickness that are deposited on an all dielectric one-dimension photonic crystal. By using the finite difference frequency domain method, coupled mode theory and finite-difference time-domain method, the conversion between the guided-modes has been investigated. This conversion can be realized in a broadband wavelength with surface pattern of this low-index ridge.

View Article and Find Full Text PDF

Multilayer structures with two dielectrics having different optical constants and no structural features in the - plane can display photonic band gaps (PBGs) and are called one-dimensional photonic crystals (1DPCs). If the top layer thickness is carefully selected, the electromagnetic energy can be trapped at the top surface. These highly enhanced fields are called Bloch surface waves (BSWs).

View Article and Find Full Text PDF

The coupling of fluorescence with surface electromagnetic modes, such as surface plasmons on thin metal films or Bloch surface waves (BSW) on truncated one-dimensional photonic crystals (1DPC), are presently utilized for many fluorescence-based applications. In addition to the surface wave, 1DPCs also support other electromagnetic modes that are confined within the 1DPC structure. These internal modes (IMs) have not received much attention for fluorescence coupling due to lack of spatial overlap of their electric fields with the surface bound fluorophores.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides possess considerable second-order nonlinear coefficients but a limited efficiency of frequency conversion due to the short interaction length with light under the typical direct illumination. Here, we demonstrate an efficient frequency mixing of the guided surface waves on a monolayer tungsten disulfide (WS) by simultaneously lifting the temporal and spatial overlap of the guided wave and the nonlinear crystal. Three orders-of-magnitude enhancement of the conversion efficiency was achieved in the counter-propagating excitation configuration.

View Article and Find Full Text PDF
Article Synopsis
  • - The increase in aerosol particles due to water absorption during high humidity affects their physical and chemical characteristics, impacting public health, atmospheric chemistry, and climate.
  • - Current measurement techniques aren’t able to capture the growth dynamics of individual aerosol nanoparticles, including the timing of their transition from solid to liquid.
  • - A new label-free photonic microscope using Bloch surface waves allows for real-time observation of hygroscopic growth in single aerosols, revealing that organic materials can slow the phase transition, and can be adapted for studying various aerosol reactions.
View Article and Find Full Text PDF

Aerosol particle hygroscopicity is an important factor in visibility reduction, cloud formation, radiation forcing, and the global climate. The high number concentration of nanoparticles (defined as particles with diameters below 100 nm) means that their hygroscopic growth abilities and potential contributions to the climate and environment are significant. Therefore, a rapid and accurate analysis method for single nanoparticle hygroscopic growth in an atmospheric environment is important to characterize the effects of the particle's physical and chemical properties in this process.

View Article and Find Full Text PDF

Near-field optical trapping can be realized with focused evanescent waves that are excited at the water-glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water-gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves.

View Article and Find Full Text PDF

Metallic particles are promising for applications in various areas, including optical sensing, imaging and electric field enhancement-induced optical and thermal effects. The ability to trap or transport these particles stably will be important in these applications. However, while traditional optical tweezers can trap metallic Rayleigh particles easily, it is difficult to trap metallic mesoscopic/Mie particles because of the strong scattering forces that come from the far-field trapping laser beam.

View Article and Find Full Text PDF

Dielectric multilayer photonic-band-gap structures, called one-dimensional photonic crystals (1DPCs), have drawn considerable attention in the fields of physics, chemistry, and biophotonics. Here, experimental results verify the feasibility of a 1DPC working as a substrate for switchable manipulations of colloidal microparticles. The optically induced thermal convective force on a 1DPC can assemble colloidal particles that are dispersed in a water solution, while the photonic scattering force on the same 1DPC caused by propagating evanescent waves can guide these particles.

View Article and Find Full Text PDF

Metal nanostructures (such as plasmonic antennas) have been widely demonstrated to be excellent devices for beaming and sorting the fluorescence emission. These effects rely on the constructive scattering or diffraction from different elements (such as metal corrugations or nanorings) of the nanostructures. However, subwavelength-size nanoholes, without nearby nanoscale features, results in an angularly dispersed emission from the distal surface.

View Article and Find Full Text PDF

The original version of the Article contained an error in Figure 2 in which the TEM images in Fig. 2b and d were incorrect. Additionally, the seventh sentence of the 'Mechanism for the dissymmetry enhancement of SCL field' section of the Methods originally contained a mistake in the first equation.

View Article and Find Full Text PDF

Programmable materials and reconfigurable photonic components, which can change their physicochemical properties and functionalities upon external stimuli, are a major topic of interest in modern science. However, most conventional reconfigurable photonic components rely heavily on mechanical deformation, restricting their application. Herein, a novel strategy based on a dynamically tunable fluorescence resonance energy transfer process to design and fabricate programmable fluorescent micropatterns within single polymer microfiber is proposed.

View Article and Find Full Text PDF

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers.

View Article and Find Full Text PDF

In this work, the resonant coupling behaviors between the transverse-electric (TE) and transverse-magnetic (TM) Bloch surface waves (BSWs) on a dielectric multilayer have been theoretically studied. Due to the different penetration depths in the dielectric multilayer, the TM BSWs and TE BSWs can act as the radiative and dark electromagnetic modes, respectively. By using a rectangular grating on the dielectric multilayer, both Rabi splitting and Fano resonance phenomena based on the coupling of the two BSW modes were demonstrated, through tuning the period of the grating and the azimuthal angle of the incoming wave.

View Article and Find Full Text PDF