Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes.
View Article and Find Full Text PDFLifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis.
View Article and Find Full Text PDFBovine tuberculosis is caused by infection with , which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of infection on the bovine alveolar macrophage (bAM) epigenome.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA mA reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse mA transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis.
View Article and Find Full Text PDFBackground: The mechanism by which protein complexes interact to regulate the deposition of post-translational modifications of histones remains poorly understood. This is particularly important at regulatory regions, such as CpG islands (CGIs), which are known to recruit Trithorax (TrxG) and Polycomb group proteins. The CxxC zinc finger protein 1 (CFP1, also known as CGBP) is a subunit of the TrxG SET1 protein complex, a major catalyst of trimethylation of H3K4 (H3K4me3).
View Article and Find Full Text PDFThe disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative.
View Article and Find Full Text PDFStrict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure.
View Article and Find Full Text PDFRegulatory elements (enhancers) that are remote from promoters play a critical role in the spatial, temporal, and physiological control of gene expression. Studies on specific loci, together with genome-wide approaches, suggest that there may be many common mechanisms involved in enhancer-promoter communication. Here, we discuss the multiprotein complexes that are recruited to enhancers and the hierarchy of events taking place between regulatory elements and promoters.
View Article and Find Full Text PDFOver the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease-causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer.
View Article and Find Full Text PDFOver the last three decades, studies of the α- and β-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation.
View Article and Find Full Text PDFATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We show that ATRX binds many imprinted domains individually but that transient co-localization between imprinted domains in the nuclei of neurons does not require ATRX.
View Article and Find Full Text PDFBackground: Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2013
We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10-1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster.
View Article and Find Full Text PDFAlthough mutations causing monogenic disorders most frequently lie within the affected gene, sequence variation in complex disorders is more commonly found in noncoding regions. Furthermore, recent genome- wide studies have shown that common DNA sequence variants in noncoding regions are associated with "normal" variation in gene expression resulting in cell-specific and/or allele-specific differences. The mechanism by which such sequence variation causes changes in gene expression is largely unknown.
View Article and Find Full Text PDFA substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure.
View Article and Find Full Text PDFRemote distal enhancers may be located tens or thousands of kilobases away from their promoters. How they control gene expression is still poorly understood. Here, we analyze the influence of a remote enhancer on the balance between repression (Polycomb-PcG) and activation (Trithorax-TrxG) of a developmentally regulated gene associated with a CpG island.
View Article and Find Full Text PDFEpigenetics Chromatin
June 2011
Background: In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3) lineage control genes while 'poising' (H3K4me3) them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined.
Results: Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus.
Previous studies in the mouse have shown that high levels of alpha-globin gene expression in late erythropoiesis depend on long-range, physical interactions between remote upstream regulatory elements and the globin promoters. Using quantitative chromosome conformation capture (q3C), we have now analyzed all interactions between 4 such elements lying 10 to 50 kb upstream of the human alpha cluster and their interactions with the alpha-globin promoter. All of these elements interact with the alpha-globin gene in an erythroid-specific manner.
View Article and Find Full Text PDFOver the past 20 years, there has been an increasing awareness that gene expression can be regulated by multiple cis-acting sequences located at considerable distances (10-1000 kb) from the genes they control. Detailed investigation of a few specialized mammalian genes, including the genes controlling the synthesis of hemoglobin, provide important models to understand how such long-range regulatory elements act. In general, these elements contain a high density of evolutionarily conserved, transcription factor-binding sites and in many ways resemble the upstream regulatory elements found adjacent to the promoters of genes in simpler organisms, differing only in the distance over which they act.
View Article and Find Full Text PDFAnnu Rev Genomics Hum Genet
December 2007
A postgenome challenge is to understand how the code in DNA is converted into the biological processes underlying various cell fates. By establishing the appropriate technical tools, we are moving from an era in which such questions have been asked by studying individual genes to one in which large domains, whole chromosomes, and the entire human genome can be investigated. These developments will allow us to study in parallel the transcriptional program and components of the epigenetic program (nuclear position, timing of replication, chromatin structure and modification, DNA methylation) to determine the hierarchy and order of events required to switch genes on and off during differentiation and development.
View Article and Find Full Text PDFTo understand how mammalian genes are regulated from their natural chromosomal environment, we have analysed the molecular events occurring throughout a 150 kb chromatin segment containing the alpha globin gene locus as it changes from a poised, silent state in erythroid progenitors, to the fully activated state in late, erythroid cells. Active transcription requires the late recruitment of general transcription factors, mediator and Pol II not only to the promoter but also to its remote regulatory elements. Natural mutants of the alpha cluster show that whereas recruitment of the pre-initiation complex to the upstream elements occurs independently, recruitment to the promoter is largely dependent on the regulatory elements.
View Article and Find Full Text PDF