Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC 50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition.
View Article and Find Full Text PDFIn this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205 Lu melanoma cells, activation of the Wnt signaling pathway, IC(50) values against the protein kinases GSK-3beta and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors.
View Article and Find Full Text PDFA general route to ruthenium pyridocarbazole half-sandwich complexes is presented and applied to the synthesis of sixteen new compounds, many of which have modulated protein kinase inhibition properties. For example, the incorporation of a fluorine into the pyridine moiety increases the binding affinity for glycogen synthase kinase 3 by almost one order of magnitude. These data are supplemented with cyclic voltammetry experiments and a protein co-crystallographic study.
View Article and Find Full Text PDFA pyridocarbazole platinum complex, which matches the overall shape of the natural product staurosporine, binds with high affinity at the adenosine triphosphate binding site of glycogen synthase kinase 3 (GSK-3alpha).
View Article and Find Full Text PDFUnlike other tumors, melanomas harbor wild-type (WT) p53 but exhibit impaired p53-dependent apoptosis. The mechanisms for the impaired p53 activation are poorly understood but may be linked to the high expression of the p53 suppressor Mdm2, which is found in >50% of melanoma lesions. Here, we describe an organometallic glycogen synthase kinase 3beta (GSK3beta) inhibitor (DW1/2) as a potent activator of p53 and inducer of cell death in otherwise highly chemoresistant melanoma cells.
View Article and Find Full Text PDFA chiral second-generation organoruthenium half-sandwich compound is disclosed that shows a remarkable selectivity and cellular potency for the inhibition of glycogen synthase kinase 3 (GSK-3). The selectivity was evaluated against a panel of 57 protein kinases, in which no other kinase was inhibited to the same extent, with a selectivity window of at least tenfold to more than 1000-fold at 100 microM ATP. Furthermore, a comparison with organic GSK-3 inhibitors demonstrated the superior cellular activity of this ruthenium compound: wnt signaling was fully induced at concentrations down to 30 nM.
View Article and Find Full Text PDFReplacing natural products with kinetically inert metal complexes may lead to a new class of therapeutics in which a metal center plays the role of an innocent bystander, organizing the orientation of the organic ligands in the receptor space. As an example of this approach, a ruthenium complex is described that copies the binding mode of indolocarbazole protein kinase inhibitors and serves as a reversible, low-nanomolar inhibitor for glycogen synthase kinase 3 (GSK-3).
View Article and Find Full Text PDF