An ammonium picket porphyrin that targets bacterial membranes has been prepared and shown to bind to phosphatidylglycerol (PG), a bacterial lipid, when the lipid was in solution, contained within synthetic membrane vesicles, or when in Gram-negative and Gram-positive bacterial membranes. The multifunctional receptor was designed to interact with both the phosphate anion portion and neutral glycerol portion of the lipid headgroup. The receptor's affinity and selectivity for binding to surfactant vesicles or lipid vesicles that contain PG within their membranes was directly measured using fluorescence correlation spectroscopy (FCS).
View Article and Find Full Text PDFTheory predicts that folding free energy landscapes are intrinsically malleable and as such are expected to respond to perturbations in topographically complex ways. Structural changes upon perturbation have been observed experimentally for unfolded ensembles, folding transition states, and fast downhill folding proteins. However, the native state of proteins that fold in a two-state fashion is conventionally assumed to be structurally invariant during unfolding.
View Article and Find Full Text PDFThe E. coli Lac repressor (LacI) tetramer binds simultaneously to a promoter-proximal DNA binding site (operator) and an auxiliary operator, resulting in a DNA loop, which increases repression efficiency. Induction of the lac operon by allolactose reduces the affinity of LacI for DNA, but induction does not completely prevent looping in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
A one-state downhill protein folding process is barrierless at all conditions, resulting in gradual melting of native structure that permits resolving folding mechanisms step-by-step at atomic resolution. Experimental studies of one-state downhill folding have typically focused on the thermal denaturation of proteins that fold near the speed limit (ca. 10(6) s(-1)) at their unfolding temperature, thus being several orders of magnitude too fast for current single-molecule methods, such as single-molecule FRET.
View Article and Find Full Text PDFIn this report the correlation between the solution photoluminescence (PL) quantum yield and the fluorescence emission of individual semiconductor quantum dots (QDs) is investigated. This is done by taking advantage of previously reported enhancement in the macroscopic quantum yield of water-soluble QDs capped with dihydrolipoic acid (DHLA) when self-assembled with polyhistidine-appended proteins, and by using fluorescence coincidence analysis (FCA) to detect the presence of "bright" and "dark" single QDs in solution. This allows for changes in the fraction of the two QD species to be tracked as the PL yield of the solution is progressively altered.
View Article and Find Full Text PDFTime resolution of current single-molecule fluorescence techniques is limited to milliseconds because of dye blinking and bleaching. Here we introduce a photoprotection strategy that affords microsecond resolution by combining efficient triplet quenching by oxygen and Trolox with minimized bleaching via the oxygen radical scavenger cysteamine. Using this approach we resolved the single-molecule microsecond conformational fluctuations of two proteins: the two-state folder α-spectrin SH3 domain and the ultrafast downhill folder BBL.
View Article and Find Full Text PDFColloidal solutions of surfactants that form micelles or vesicles are useful for solubilizing and stabilizing hydrophobic molecules that are otherwise sparingly soluble in aqueous solutions. In this paper we investigate the use of micelles and vesicles prepared from ionic surfactants for solubilizing and stabilizing curcumin, a medicinal natural product that undergoes alkaline hydrolysis in water. We identify spectroscopic signatures to evaluate curcumin partitioning and deprotonation in surfactant mixtures containing micelles or vesicles.
View Article and Find Full Text PDFMixtures of oppositely charged surfactants, commonly called catanionic mixtures, are one of the most interesting and promising areas of colloidal chemistry. In this paper we review our previous work and report new results on electrostatic adsorption of organic solutes and DNA to the exterior surfaces of catanionic, unilamellar vesicles which form spontaneously in mixtures of sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium tosylate (CTAT). Our group, along with others, has shown that organic ions and polyelectrolytes will bind to the exterior surface of oppositely charged catanionic vesicles through interactions with unpaired ionic surfactants present in the vesicle bilayer.
View Article and Find Full Text PDFThis article reports on the synthesis, characterization, and binding studies of surface-functionalized, negatively charged catanionic vesicles. These studies demonstrate that the distribution of glycoconjugates in the membrane leaflet can be controlled by small alterations of the chemical structure of the conjugate. The ability to control the glycoconjugate concentration in the membrane provides a method to explore the relationship between ligand separation distance and multivalent lectin binding at the bilayer interface.
View Article and Find Full Text PDFWe demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E.
View Article and Find Full Text PDFSelf-assembly of proteins, peptides, DNA, and other biomolecules to semiconductor quantum dots (QD) is an attractive bioconjugation route that can circumvent many of the problems associated with covalent chemistry and subsequent purification. Polyhistidine sequences have been shown to facilitate self-assembly of proteins and peptides to ZnS-overcoated CdSe QDs via complexation to unoccupied coordination metal sites on the nanocrystal surface. We describe the synthesis and characterization of a thiol-reactive hexahistidine peptidic linker that can be chemically attached to thiolated-DNA oligomers and mediate their self-assembly to CdSe-ZnS core-shell QDs.
View Article and Find Full Text PDFMicroelectronic devices employ electrons for signaling whereas the nervous system signals using ions and chemicals. Bridging these signaling differences would benefit applications that range from biosensing to neuroprosthetics. Here, we report the use of localized electrical signals to perform an operation common to chemical signaling in the nervous system.
View Article and Find Full Text PDFWe present a single particle fluorescence resonance energy transfer (spFRET) study of freely diffusing self-assembled quantum dot (QD) bioconjugate sensors, composed of CdSe-ZnS core-shell QD donors surrounded by dye-labeled protein acceptors. We first show that there is direct correlation between single particle and ensemble FRET measurements in terms of derived FRET efficiencies and donor-acceptor separation distances. We also find that, in addition to increased sensitivity, spFRET provides information about FRET efficiency distributions which can be used to resolve distinct sensor subpopulations.
View Article and Find Full Text PDFWe present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives.
View Article and Find Full Text PDFVesicles formed from the cationic surfactant, cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), were used to sequester the anionic dye carboxyfluorescein. Carboxyfluorescein was efficiently sequestered in CTAT-rich vesicles via two mechanisms: encapsulation in the inner water pool and electrostatic adsorption to the charged bilayer. The apparent encapsulation efficiency (22%) includes both encapsulated and adsorbed fractions.
View Article and Find Full Text PDFModifying the surfaces of magnetic nanoparticles (MNPs) by the covalent attachment of biomolecules will enable their implementation as contrast agents for magnetic resonance imaging or as media for magnetically assisted bioseparations. In this paper we report both the surface coverage and the activity of IgG antibodies on MNPs. The antibodies were immobilized on gamma-Fe2O3 nanoparticles by conventional methods using aminopropyltriethoxy silane and subsequent activation by glutaraldehyde.
View Article and Find Full Text PDFThe development of template-synthesized silica nanotubes has created a unique opportunity for studying confined fluids by providing nanometer-scale containers in which the inner diameter (i.d.) and surface chemistry can be systematically and independently varied.
View Article and Find Full Text PDFThe Escherichia coli lactose repressor protein (LacI) provides a classic model for understanding protein-induced DNA looping. LacI has a C-terminal four-helix bundle tetramerization domain that may act as a flexible hinge. In previous work, several DNA constructs, each containing two lac operators bracketing a sequence-induced bend, were designed to stabilize different possible looping geometries.
View Article and Find Full Text PDFNanoscale particles offer a variety of interesting properties, and there is growing interest in their assembly into higher ordered structures. We report that the pH-responsive aminopolysaccharide chitosan can mediate the electrodeposition of model nanoparticles. Chitosan is known to electrodeposit at the cathode surface in response to a high localized pH.
View Article and Find Full Text PDF