J Cereb Blood Flow Metab
December 2008
Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1alpha, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for the degradation of HIF-1alpha) was deemed as a potential mechanism of ketosis on the upregulation of HIF-1alpha. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, after reversible middle cerebral artery occlusion (MCAO), and the upregulation of HIF-1alpha were investigated.
View Article and Find Full Text PDFIt is recognized that brain oxygen deprivation results in increased glycolysis and lactate accumulation. Moreover, glucose metabolism is altered during starvation or diet, resulting in increased plasma ketones (acetoacetate + beta-hydroxybutyrate; BHB). We investigated glucose and lactate adaptation to hypoxia in concurrence with diet-induced ketosis.
View Article and Find Full Text PDF