Publications by authors named "Douglas Raiford"

Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication.

View Article and Find Full Text PDF

Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H.

View Article and Find Full Text PDF

Metabolic efficiency, as a selective force shaping proteomes, has been shown to exist in Escherichia coli and Bacillus subtilis and in a small number of organisms with photoautotrophic and thermophilic lifestyles. Earlier attempts at larger-scale analyses have utilized proxies (such as molecular weight) for biosynthetic cost, and did not consider lifestyle or auxotrophy. This study extends the analysis to all currently sequenced microbial organisms that are amenable to these analyses while utilizing lifestyle specific amino acid biosynthesis pathways (where possible) to determine protein production costs and compensating for auxotrophy.

View Article and Find Full Text PDF

The study of codon usage bias is an important research area that contributes to our understanding of molecular evolution, phylogenetic relationships, respiratory lifestyle, and other characteristics. Translational efficiency bias is perhaps the most well-studied codon usage bias, as it is frequently utilized to predict relative protein expression levels. We present a novel approach to isolating translational efficiency bias in microbial genomes.

View Article and Find Full Text PDF

Motivation: As next generation sequencing is rapidly adding new genomes, their correct placement in the taxonomy needs verification. However, the current methods for confirming classification of a taxon or suggesting revision for a potential misplacement relies on computationally intense multi-sequence alignment followed by an iterative adjustment of the distance matrix. Due to intra-heterogeneity issues with the 16S rRNA marker, no classifier is available for sub-genus level, which could readily suggest a classification for a novel 16S rRNA sequence.

View Article and Find Full Text PDF

Genomic sequencing projects are an abundant source of information for biological studies ranging from the molecular to the ecological in scale; however, much of the information present may yet be hidden from casual analysis. One such information domain, trends in codon usage, can provide a wealth of information about an organism's genes and their expression. Degeneracy in the genetic code allows more than one triplet codon to code for the same amino acid, and usage of these codons is often biased such that one or more of these synonymous codons are preferred.

View Article and Find Full Text PDF

Prokaryotic organisms preferentially utilize less energetically costly amino acids in highly expressed genes. Studies have shown that the proteome of Saccharomyces cerevisiae also exhibits this behavior, but only in broad terms. This study examines the question of metabolic efficiency as a proteome-shaping force at a finer scale, examining whether trends consistent with cost minimization as an evolutionary force are present independent of protein function and amino acid physicochemical property, and consistently with respect to amino acid biosynthetic costs.

View Article and Find Full Text PDF

For most prokaryotic organisms, amino acid biosynthesis represents a significant portion of their overall energy budget. The difference in the cost of synthesis between amino acids can be striking, differing by as much as 7-fold. Two prokaryotic organisms, Escherichia coli and Bacillus subtilis, have been shown to preferentially utilize less costly amino acids in highly expressed genes, indicating that parsimony in amino acid selection may confer a selective advantage for prokaryotes.

View Article and Find Full Text PDF