Publications by authors named "Douglas R Spitz"

Diffuse intrinsic pontine gliomas (DIPG) are highly aggressive and treatment-resistant childhood primary brainstem tumors with a median survival of less than one year after diagnosis. The prevailing standard of care for DIPG, radiation therapy, does not prevent fatal disease progression, with most patients succumbing to this disease 3-8 months after completion of radiation therapy. This underscores the urgent need for novel combined-modality approaches for enhancing therapy responses.

View Article and Find Full Text PDF

Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH).

View Article and Find Full Text PDF

Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues.

View Article and Find Full Text PDF

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis.

View Article and Find Full Text PDF

Cancer cells frequently present elevated intracellular iron levels, which are thought to facilitate an enhanced proliferative capacity. Targeting iron metabolism within cancer cells presents an avenue to enhance therapeutic responses, necessitating the use of non-invasive models to modulate iron manipulation to predict responses. Moreover, the ubiquitous nature of iron necessitates the development of unique, non-invasive markers of metabolic disruptions to develop more personalized approaches and enhance the clinical utility of these approaches.

View Article and Find Full Text PDF

Background: Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked to radiation injury, but the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Purpose: Cisplatin contributes to acute kidney injury (AKI) and chronic kidney disease (CKD) that occurs with greater frequency and severity in older patients. Age-associated cisplatin sensitivity in human fibroblasts involves increased mitochondrial superoxide produced by older donor cells.

Experimental Design: Young and old C57BL/6 J murine models of cisplatin-induced AKI and CKD were treated with the SOD mimetic avasopasem manganese to investigate the potential antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC.

View Article and Find Full Text PDF

Objective: Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC).

View Article and Find Full Text PDF

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival.

View Article and Find Full Text PDF

Intermediate to high-grade lung neuroendocrine tumors (NETs; i.e., atypical carcinoid tumors) and neuroendocrine carcinomas (NECs) are currently difficult to cure.

View Article and Find Full Text PDF

Purpose: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans.

Patients And Methods: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment.

View Article and Find Full Text PDF

Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury.

View Article and Find Full Text PDF

Diffuse intrinsic pontine gliomas (DIPG) are an aggressive type of pediatric brain tumor with a very high mortality rate. Surgery has a limited role given the tumor's location. Palliative radiation therapy alleviates symptoms and prolongs survival, but median survival remains less than 1 year.

View Article and Find Full Text PDF

A distinctive feature of cancer is the upregulation of sirtuin proteins. Sirtuins are class III NAD+-dependent deacetylases involved in cellular processes such as proliferation and protection against oxidative stress. SIRTs 1 and 2 are also overexpressed in several types of cancers including non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Thioredoxin Reductase (TrxR) is a key enzyme in hydroperoxide detoxification through peroxiredoxin enzymes and in thiol-mediated redox regulation of cell signaling. Because cancer cells produce increased steady-state levels of reactive oxygen species (ROS; i.e.

View Article and Find Full Text PDF

Small bowel neuroendocrine tumors (SBNETs) originate from enterochromaffin cells in the intestine which synthesize and secrete serotonin. SBNETs express high levels of tryptophan hydroxylase 1 (Tph1), a key enzyme in serotonin biosynthesis. Patients with high serotonin level may develop carcinoid syndrome, which can be treated with somatostatin analogues and the Tph1 inhibitor telotristat ethyl in severe cases.

View Article and Find Full Text PDF

Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed.

View Article and Find Full Text PDF

Background We compared cardiac outcomes for surgery-eligible patients with stage III non-small-cell lung cancer treated adjuvantly or neoadjuvantly with chemotherapy versus chemo-radiation therapy in the Surveillance, Epidemiology and End Results-Medicare database. Methods and Results Patients were age 66+, had stage IIIA/B resectable non-small-cell lung cancer diagnosed between 2007 and 2015, and received adjuvant or neoadjuvant chemotherapy or chemo-radiation within 121 days of diagnosis. Patients having chemo-radiation and chemotherapy only were propensity-score matched and followed from day 121 to first cardiac outcome, noncardiac death, radiation initiation by patients who received chemotherapy only, fee-for-service enrollment interruption, or December 31, 2016.

View Article and Find Full Text PDF

Background: Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes.

Methods: Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment.

View Article and Find Full Text PDF

Background: Reactive oxygen species (ROS) contribute to platelet hyperactivation during aging. Several oxidative pathways and antioxidant enzymes have been implicated; however, their mechanistic contributions during aging remain elusive. We hypothesized that mitochondria are an important source of platelet ROS and that mitochondrial SOD2 (superoxide dismutase) protects against mitochondrial ROS-driven platelet activation and thrombosis during aging.

View Article and Find Full Text PDF

Purpose: Ataxia telangiectasia mutated kinase (ATM) inhibitors are potent radiosensitizers that regulate DNA damage responses and redox metabolism, but they have not been translated clinically because of the potential for excess normal tissue toxicity. Pharmacologic ascorbate (P-AscH; intravenous administration achieving mM plasma concentrations) selectively enhances HO-induced oxidative stress and radiosensitization in tumors while acting as an antioxidant and mitigating radiation damage in normal tissues including the bowel. We hypothesized that P-AscH could enhance the therapeutic index of ATM inhibitor-based chemoradiation by simultaneously enhancing the intended effects of ATM inhibitors in tumors and mitigating off-target effects in adjacent normal tissues.

View Article and Find Full Text PDF

Background: Brain cancer incidence and mortality rates are greater in males. Understanding the molecular mechanisms that underlie those sex differences could improve treatment strategies. Although sex differences in normal metabolism are well described, it is currently unknown whether they persist in cancerous tissue.

View Article and Find Full Text PDF