Activation, differentiation, and expansion of alloreactive CD8 T cells, the dominant effectors that mediate murine heart allograft rejection, requires allorecognition, costimulation, and cytokine-initiated signals. While previous work showed that alloreactive CD4 T cell immunity entails immune cell-produced and locally activated complement, whether and how C3a receptor 1 (C3aR1) signaling impacts transplant outcomes and the mechanisms linking C3aR1 to alloreactive CD8 T cell activation/expansion remain unclear. Herein we show that recipient C3aR1 deficiency or pharmacological C3aR1 blockade synergizes with tacrolimus to significantly prolong allograft survival versus tacrolimus-treated controls (median survival time 21 vs.
View Article and Find Full Text PDFThe complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome.
View Article and Find Full Text PDFJ Transl Med
November 2011
Th17 cells and CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are thought to promote and suppress inflammatory responses, respectively. Here we explore why under Th17 cell polarizing conditions, Treg cells did not suppress, but rather upregulated, the expression of interleukin-17A (IL-17A), IL-17F, and IL-22 from responding CD4(+) T cells (Tresp cells). Upregulation of IL-17 cytokines in Tresp cells was dependent on consumption of IL-2 by Treg cells, especially at early time points both in vitro and in vivo.
View Article and Find Full Text PDFThe vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to the nuclear vitamin D receptor (VDR), which recruits its retinoid X receptor (RXR) heterodimeric partner to recognize vitamin D responsive elements (VDREs) in target genes. 1,25(OH)(2)D(3) is known primarily as a regulator of calcium, but it also controls phosphate (re)absorption at the intestine and kidney. Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced in osteoblasts that, like PTH, lowers serum phosphate by inhibiting renal reabsorption through Npt2a/Npt2c.
View Article and Find Full Text PDF1,25-Dihydroxyvitamin D(3) (1,25D) is known primarily as a regulator of calcium, but 1,25D also promotes phosphate absorption from intestine, reabsorption from kidney, and bone mineral resorption. FGF23 is a newly discovered phosphaturic hormone that, like PTH, lowers serum phosphate by inhibiting renal reabsorption via Npt2a. We show that 1,25D strongly upregulates FGF23 in bone.
View Article and Find Full Text PDF