Publications by authors named "Douglas O Cheyne"

Introduction: Articulography and functional neuroimaging are two major tools for studying the neurobiology of speech production. Until now, however, it has generally not been feasible to use both in the same experimental setup because of technical incompatibilities between the two methodologies.

Methods: Here we describe results from a novel articulography system dubbed Magneto-articulography for the Assessment of Speech Kinematics (MASK), which is technically compatible with magnetoencephalography (MEG) brain scanning systems.

View Article and Find Full Text PDF

To generate a hand-specific reach plan, the brain must integrate hand-specific signals with the desired movement strategy. Although various neurophysiology/imaging studies have investigated hand-target interactions in simple reach-to-target tasks, the whole brain timing and distribution of this process remain unclear, especially for more complex, instruction-dependent motor strategies. Previously, we showed that a pro/anti pointing instruction influences magnetoencephalographic (MEG) signals in frontal cortex that then propagate recurrently through parietal cortex (Blohm G, Alikhanian H, Gaetz W, Goltz HC, DeSouza JF, Cheyne DO, Crawford JD.

View Article and Find Full Text PDF

Articulography and functional neuroimaging are two major tools for studying the neurobiology of speech production. Until recently, however, it has generally not been possible to use both in the same experimental setup because of technical incompatibilities between the two methodologies. Here we describe results from a novel articulography system dubbed Magneto-articulography for the Assessment of Speech Kinematics (MASK), which we used to derive kinematic profiles of oro-facial movements during speech.

View Article and Find Full Text PDF

Our ability to control and inhibit automatic behaviors is crucial for negotiating complex environments, all of which require rapid communication between sensory, motor, and cognitive networks. Here, we measured neuromagnetic brain activity to investigate the neural timing of cortical areas needed for inhibitory control, while 14 healthy young adults performed an interleaved prosaccade (look at a peripheral visual stimulus) and antisaccade (look away from stimulus) task. Analysis of how neural activity relates to saccade reaction time (SRT) and occurrence of direction errors (look at stimulus on antisaccade trials) provides insight into inhibitory control.

View Article and Find Full Text PDF

Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms.

View Article and Find Full Text PDF

Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG).

View Article and Find Full Text PDF

In this paper we propose an agglomerative hierarchical clustering Ward's algorithm in tandem with the Affinity Propagation algorithm to reliably localize active brain regions from magnetoencephalography (MEG) brain signals. Reliable localization of brain areas with MEG has been difficult due to variations in signal strength, and the spatial extent of the reconstructed activity. The proposed approach to resolve this difficulty is based on adaptive clustering on reconstructed beamformer images to find locations that are consistently active across different participants and experimental conditions with high spatial resolution.

View Article and Find Full Text PDF

The human sensorimotor cortex demonstrates a variety of oscillatory activity that is strongly modulated by movement and somatosensory input. Studies using scalp EEG and intracranial electrical recordings have provided much of our current knowledge regarding the frequency and temporal specificity of these sensorimotor rhythms and their relationship to various movement parameters, however with limitations in identifying the underlying neural sources, and the variety of motor behaviors that can be studied, respectively. Magnetoencephalography (MEG) recordings, combined with spatial filtering source reconstruction methods, provide an ideal non-invasive method for the localization of sensorimotor rhythms and for describing their precise time course during a variety of motor tasks.

View Article and Find Full Text PDF

Human action involves a combination of controlled and automatic behavior. These processes may interact in tasks requiring rapid response selection or inhibition, where temporal constraints preclude timely intervention by conscious, controlled processes over automatized prepotent responses. Such contexts tend to produce frequent errors, but also rapidly executed correct responses, both of which may sometimes be perceived as surprising, unintended, or "automatic".

View Article and Find Full Text PDF

Auditory responses to speech sounds that are self-initiated are suppressed compared to responses to the same speech sounds during passive listening. This phenomenon is referred to as speech-induced suppression, a potentially important feedback-mediated speech-motor control process. In an earlier study, we found that both adults who do and do not stutter demonstrated a reduced amplitude of the auditory M50 and M100 responses to speech during active production relative to passive listening.

View Article and Find Full Text PDF

We used magnetoencephalography to investigate auditory evoked responses to speech vocalizations and non-speech tones in adults who do and do not stutter. Neuromagnetic field patterns were recorded as participants listened to a 1 kHz tone, playback of their own productions of the vowel /i/ and vowel-initial words, and actively generated the vowel /i/ and vowel-initial words. Activation of the auditory cortex at approximately 50 and 100 ms was observed during all tasks.

View Article and Find Full Text PDF

Constraint-induced movement therapy improves motor function in the affected hand of children with hemiplegic cerebral palsy and results in cortical changes in adults with stroke. This study measured clinical improvement and cortical reorganization in a child with hemiplegia who underwent modified constraint-induced movement therapy for 3 weeks. Clinical, functional magnetic resonance imaging and magnetoencephalography measurements were done at baseline, after therapy, and 6 months after therapy.

View Article and Find Full Text PDF

A card sorting paradigm was used to observe the neural correlates of feedback processing in adult participants. Visually presented feedback was used to indicate response accuracy and the requirement to shift response set in a 2-category card sorting task. Magnetoencephalography (MEG) responses to feedback cues were analysed using a beamformer-based spatial filtering algorithm (event-related Synthetic Aperture Magnetometry, erSAM).

View Article and Find Full Text PDF

In this experiment, the oscillatory responses of the MEG were characterized during the observation of four viewing conditions: (a) observation of mouth movements, (b) observation of a non-biological motion stimulus (a mechanical aperture opening and shutting), (c) observation of object-directed mouth movements and (d) observation of speech-like mouth movements. Data were analyzed using synthetic aperture magnetometry (SAM) in three frequency bands, beta (15-35 Hz), gamma (35-70 Hz) and alpha/mu (8-15 Hz). Results showed that observations of biological motion resulted in beta desynchronization over lateral sensorimotor areas, while observations of non-biological motion resulted in a more medial desynchronization, an effect that may be related to the processing of a structured event sequence.

View Article and Find Full Text PDF

A spatial filter algorithm based on minimum-variance beamforming (synthetic aperture magnetometry (SAM)) was applied to single trial neuromagnetic recordings in order to localize primary somatosensory cortex. Magnetoencephalography (MEG) responses to electrical stimulation of the right and left median nerve were recorded using a whole-head MEG system and localized using both SAM spatial filtering and dipole analysis. Spatial filtering was applied to single trial neuromagnetic recordings to produce 3-dimensional difference images of source power between active (0-50 ms) and control states (-50-0 ms) in the range of 15-300 Hz.

View Article and Find Full Text PDF