Background: Hip fracture is a debilitating injury, especially in older adults. The purpose of this study was to determine the relationships between Trail-Making test performance and parameters of the choice stepping reaction time test in community-dwelling older adults after hip fracture.
Methods: Twenty-four older adults post-hip fracture repair participated in an ancillary study for physical therapy interventions.
This pilot study investigated the effect of age on the ability of motor prediction during self-triggered drop perturbations (SLF) to modulate startle-like first trial response (FTR) magnitude during externally-triggered (EXT) drop perturbations. Ten healthy older (71.4 ± 1.
View Article and Find Full Text PDFThis study investigated aging changes in protective balance and startle responses to sudden drop perturbations and their effect on landing impact forces (vertical ground reaction forces, vGRF) and balance stability. Twelve healthy older (6 men; mean age = 72.5 ± 2.
View Article and Find Full Text PDFBackground: Locomotor adaptation has been suggested as a way to improve gait symmetry in individuals post-stroke. Most perturbation methods utilize costly, specialized equipment. The use of a unilateral leg weight may provide a low cost, clinically translatable alternative.
View Article and Find Full Text PDFThe aim of the present study was to investigate whether or not startle reactions contribute to the whole body postural responses following sudden freefall in standing humans. Nine healthy participants stood atop a moveable platform and received externally-triggered (EXT) and selftriggered (SLF) drop perturbations of the support surface. Electromyographic (EMG) activity was recorded bilaterally over the sternocleidomastoid (SCM), deltoid (DLT), biceps brachii (BIC), medial gastrocnemius (GAS), and tibialis anterior (TA) muscles.
View Article and Find Full Text PDFObjectives: Determine whether adaptation to a swing phase perturbation during gait transferred from treadmill to overground walking, the rate of overground deadaptation, and whether overground aftereffects improved step length asymmetry in persons with hemiparetic stroke and gait asymmetry.
Methods: Ten participants with stroke and hemiparesis and 10 controls walked overground on an instrumented gait mat, adapted gait to a swing phase perturbation on a treadmill, then walked overground on the gait mat again. Outcome measures, primary: overground step length symmetry, rates of treadmill step length symmetry adaptation and overground step length symmetry deadaptation; secondary: overground gait velocity, stride length, and stride cycle duration.
Background: Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry.
View Article and Find Full Text PDFHuman walking must be flexible enough to accommodate many contexts and goals. One form of this flexibility is locomotor adaptation: a practice-dependent alteration to walking occurring in response to some novel perturbing stimulus. Although studies have examined locomotor adaptation and its storage by the CNS in humans, it remains unclear whether altered movements occurring in the leg contralateral to a perturbation are caused by true practice-dependent adaptation or whether they are generated via feedback corrective mechanisms.
View Article and Find Full Text PDFWe have previously shown an asymmetric generalization following a prism-induced visuomotor adaptation. Subjects who adapt to laterally deviating prism lenses during walking show a broad generalization to an arm pointing task, while subjects who adapt to prisms during arm pointing do not show generalization to walking. It is not known whether this broad generalization persists with other movements outside of walking or what specific features of the walking task, e.
View Article and Find Full Text PDFObjective: To test the necessity of videotaping, test-retest reliability, and item stability and validity of a modified Wolf Motor Function Test (WMFT) for people with mild and moderate chronic upper-extremity (UE) hemiparesis caused by stroke.
Design: Raters of videotape versus direct observation; test-retest reliability over 3 observations, item stability, and criterion validity with upper-extremity Fugl-Meyer Assessment (FMA) in the mildly and moderately impaired groups.
Setting: Academic research center.