Theory of the evolution of pathogen specialization suggests that a specialist pathogen gains high fitness in one host, but this comes with fitness loss in other hosts. By contrast, a generalist pathogen does not achieve high fitness in any host, but gains ecological fitness by exploiting different hosts, and has higher fitness than specialists in nonspecialized hosts. As a result, specialist pathogens are predicted to have greater variation in fitness across hosts, and generalists would have lower fitness variation across hosts.
View Article and Find Full Text PDFViral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus, infects several marine and freshwater fish species. There are many strains of VHSV that affect different fish, but some strains of one genetic subgroup have gained high virulence in rainbow trout (). To define the genetic basis of high virulence in trout, we used reverse genetics to create chimeric VHSVs in which viral nucleoprotein (N), P (phosphoprotein), or M (matrix protein) genes, or the N and P genes, were exchanged between a trout-virulent European VHSV strain (DK-3592B) and a trout-avirulent North American VHSV strain (MI03).
View Article and Find Full Text PDFBackground: Viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus belonging to the Novirhabdovirus genus, causes severe disease and mortality in many marine and freshwater fish species worldwide. VHSV isolates are classified into four genotypes and each group is endemic to specific geographic regions in the north Atlantic and Pacific Oceans. Most viruses in the European VHSV genotype Ia are highly virulent for rainbow trout (Oncorhynchus mykiss), whereas, VHSV genotype IVb viruses from the Great Lakes region in the United States, which caused high mortality in wild freshwater fish species, are avirulent for trout.
View Article and Find Full Text PDFThe ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes.
View Article and Find Full Text PDF