Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex.
View Article and Find Full Text PDFUnder certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of 'overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation.
View Article and Find Full Text PDFBecause of the small particle size, orientation-dependent diffusion measurements in microporous materials remains a challenging task. We highlight here the potential of micro-imaging by interference microscopy in a case study with MFI-type crystals in which, although with different accuracies, transient concentration profiles in all three directions can be observed. The measurements, which were performed with "rounded-boat" shaped crystals, reproduce the evolution patterns of the guest profiles recorded in previous studies with the more common "coffin-shaped" MFI crystals.
View Article and Find Full Text PDFThe remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.
View Article and Find Full Text PDFNanoporous solids are attractive materials for energetically efficient and environmentally friendly catalytic and adsorption separation processes. Although the performance of such materials is largely dependent on their molecular transport properties, our fundamental understanding of these phenomena is far from complete. This is particularly true for the mechanisms that control the penetration rate through the outer surface of these materials (commonly referred to as surface barriers).
View Article and Find Full Text PDFIn this study the zero length column (ZLC) technique is extended to the case where the decay of the adsorbed phase concentration is observed directly by nuclear magnetic resonance (NMR). An adsorption-desorption apparatus compatible with a 400-MHz NMR spectrometer was developed. It operates with nitrogen or helium as the inert purge gas.
View Article and Find Full Text PDF