The impact of organic bulking agents on the biodegradation of petroleum hydrocarbons in crude oil impacted soils was evaluated in batch laboratory experiments. Crude oil impacted soils from three separate locations were amended with fertilizer and bulking agents consisting of biochars derived from walnut shells or ponderosa pine wood chips produced at 900 °C. The batch reactors were incubated at 25 °C and sampled at pre-determined intervals to measure changes in total petroleum hydrocarbons (TPH) over time.
View Article and Find Full Text PDFIn a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and -xylene, abbreviated BTX (No-Ethanol Lane) and BTX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BTX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea.
View Article and Find Full Text PDFConservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (), and tracer cumulative mass discharge () through control planes combined with hydraulic head observations (). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used.
View Article and Find Full Text PDFAlthough the anaerobic biodegradation of methyl -butyl ether (MTBE) and -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with C-MTBE, C-MTBE (only methoxy carbon labeled), orC-TBA.
View Article and Find Full Text PDFGround Water Monit Remediat
February 2012
The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient.
View Article and Find Full Text PDFAquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume.
View Article and Find Full Text PDFA tracer plume was created within a thin aquifer by injection for 299 d of two adjacent "sub-plumes" to represent one type of plume heterogeneity encountered in practice. The plume was monitored by snapshot sampling of transects of fully screened wells. The mass injection rate and total mass injected were known.
View Article and Find Full Text PDFA methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data.
View Article and Find Full Text PDFEnviron Sci Technol
August 2008
A controlled-release study conducted at Vandenberg Air Force Base involved the injection of anaerobic groundwater amended with benzene, toluene, and o-xylene (BToX; 1-3 mg/L each) in two parallel lanes: lane A injectate contained no ethanol, whereas lane B injectate contained approximately 500 mg/L ethanol. As reported previously by Mackay and co-workers, ethanol led to slower BToX disappearance in lane B. Here, we report on assessments of BToX natural attenuation by three independent and specific monitoring approaches: signature metabolites diagnostic of anaerobic TX metabolism (benzysuccinates), compound-specific isotope analysis (CSIA), and quantitative polymerase chain reaction (qPCR) analysis of a catabolic gene involved in anaerobic TX degradation (bssA).
View Article and Find Full Text PDFCompound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane").
View Article and Find Full Text PDFSide-by-side experiments were conducted in a sulfate-reducing aquifer at a former fuel station to evaluate the effect of ethanol on biodegradation of other gasoline constituents. On one side, for approximately 9 months we injected groundwater amended with 1-3 mg/L benzene, toluene, and o-xylene (BToX). On the other side, we injected the same, adding approximately 500 mg/L ethanol.
View Article and Find Full Text PDFBiodegradation
December 2004
Monitored natural attenuation may be applied as a risk-based remediation strategy if it can be established that contaminants are or will be reduced to some acceptable level at or before a compliance point. Contaminant attenuation is often attributed to intrinsic biodegradation, which in some circumstances may occur only at the plume fringes where electron acceptors from the surrounding uncontaminated zones mix by dispersion and diffusion with the plume. However, due to the common spatial and temporal variability exhibited by many plumes, the centreline monitoring approaches advocated in many natural attenuation protocols may be unable to detect natural attenuation occurring primarily by fringe processes.
View Article and Find Full Text PDFCarbon and hydrogen isotopic fractionation during aerobic biodegradation of MTBE by a bacterial pure culture (PM1) and a mixed consortia from Vandenberg Air Force Base (VAFB) were studied in order to assess the relative merits of stable carbon versus hydrogen isotopic analysis as an indicator of biodegradation. Carbon isotopic enrichment in residual MTBE of up to 8.1/1000 was observed at 99.
View Article and Find Full Text PDFMicrocosm studies with sediments from Vandenberg Air Force Base, CA, suggest that native aerobic methyl tert-butyl ether (MTBE)-degrading microorganisms can be stimulated to degrade MTBE. In a series of field experiments, dissolved oxygen has been released into the anaerobic MTBE plume by diffusion through the walls of oxygen-pressurized polymeric tubing placed in contact with the flowing groundwater. MTBE concentrations were decreased from several hundred to less than 10 microg/L during passage through the induced aerobic zone, due apparently to in situ biodegradation: abiotic MTBE loss mechanisms were insignificant.
View Article and Find Full Text PDF