Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6.
View Article and Find Full Text PDFResearch toward a next-generation HCV NS5A inhibitor has identified fluorobenzimidazole analogs that demonstrate potent, broad-genotype in vitro activity against HCV genotypes 1-6 replicons as well as HCV NS5A variants that are orders of magnitude less susceptible to inhibition by first-generation NS5A inhibitors in comparison to wild-type replicons. The fluorobenzimidazole inhibitors have improved pharmacokinetic properties in comparison to non-fluorinated benzimidazole analogs. Discovery of these inhibitors was facilitated by exploring SAR in a structurally simplified inhibitor series.
View Article and Find Full Text PDFThe synthesis and structure-activity relationships of a novel aryl uracil series which contains a fused 5,6-bicyclic ring unit for HCV NS5B inhibition is described. Several analogs display replicon cell culture potencies in the low nanomolar range along with excellent rat pharmacokinetic values.
View Article and Find Full Text PDFAryl dihydrouracil derivatives were identified from high throughput screening as potent inhibitors of HCV NS5B polymerase. The aryl dihydrouracil derivatives were shown to be non-competitive with respect to template RNA and elongation nucleotide substrates. They demonstrated genotype 1 specific activity towards HCV NS5B polymerases.
View Article and Find Full Text PDFA series of quinoline derivatives was synthesized as potential bioisosteric replacements for the benzothiadiazine moiety of earlier Hepatitis C NS5B polymerase inhibitors. Several of these compounds exhibited potent activity in enzymatic and replicon assays.
View Article and Find Full Text PDFBenzothiadiazine inhibitors of the HCV NS5B RNA-dependent RNA polymerase are an important class of non-nucleoside inhibitors that have received considerable attention in the search for novel HCV therapeutics. Research in our laboratories has identified a novel series of tetracyclic benzothiadiazine inhibitors of HCV polymerase bearing a benzylamino substituent on the B-ring. Compounds in this series exhibit low-nanomolar activities in both genotypes 1a and 1b polymerase inhibition assays and subgenomic replicon assays.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) NS5B polymerase is essential for viral replication and has been a prime target for drug discovery research. Our efforts directed toward the discovery of HCV polymerase inhibitors resulted in the identification of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines 2 and 3. The most active compound displayed activity in genotypes 1a and 1b polymerase and replicon cell culture inhibition assays at subnanomolar and low nanomolar concentrations, respectively.
View Article and Find Full Text PDF4,4-Dialkyl-1-hydroxy-3-oxo-3.4-dihydronaphthalene-3-yl benzothiadiazine derivatives were synthesized and evaluated as inhibitors of genotypes 1a and 1b HCV NS5B polymerase. A number of these compounds exhibited potent activity against genotypes 1a and 1b HCV polymerase in both enzymatic and cell culture activities.
View Article and Find Full Text PDFSubstituted 1-hydroxy-4,4-dialkyl-3-oxo-3,4-dihydronaphthalene benzothiadiazine derivatives were investigated as inhibitors of genotype 1 HCV polymerase. Structure-activity relationship patterns for this class of compounds are discussed. It was found that the saturated alkane dialkyl units provided the most active analogs.
View Article and Find Full Text PDFThis review covers recent developments in several important aspects of research on oxazolidinone antibacterial agents. Structure-activity relationships are first discussed, emphasizing bioisosteric replacements for the both the oxazolidinone ring and the N-acetylaminomethyl group at C-5. The oxazolidinones have a mechanism of action that is distinct from other antibacterial agents, whereby protein synthesis is inhibited prior to initiation.
View Article and Find Full Text PDF