Publications by authors named "Douglas Jardim Messeder"

This study investigates the physiological response to heat stress of three genetically different Symbiodiniaceae strains isolated from the scleractinian coral Mussismilia braziliensis, endemic of the Abrolhos Bank, Brazil. Cultures of two Symbiodinium sp. and one Cladocopium sp.

View Article and Find Full Text PDF

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes.

View Article and Find Full Text PDF

Chloroplast ascorbate peroxidases exert an important role in the maintenance of hydrogen peroxide levels in chloroplasts by using ascorbate as the specific electron donor. In this work, we performed a functional study of the stromal APX in rice (OsAPX7) and demonstrated that silencing of OsAPX7 did not impact plant growth, redox state, or photosynthesis parameters. Nevertheless, when subjected to drought stress, silenced plants (APX7i) show a higher capacity to maintain stomata aperture and photosynthesis performance, resulting in a higher tolerance when compared to non-transformed plants.

View Article and Find Full Text PDF

Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought.

View Article and Find Full Text PDF

Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms.

View Article and Find Full Text PDF

Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme.

View Article and Find Full Text PDF

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling.

View Article and Find Full Text PDF

Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level.

View Article and Find Full Text PDF

Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L.

View Article and Find Full Text PDF

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass.

View Article and Find Full Text PDF

Chloroplast APX isoforms display controversial roles as HO scavengers and signaling players in response to abiotic stress and conclusive results are lacking. We tested the hypothesis that thylakoidal APX displays an important role for drought tolerance, especially by regulating abundance of essential protein species. For this, OsApx8 RNAi-silenced rice (apx8) and non-transformed plants (NT) were exposed to mild water deficit.

View Article and Find Full Text PDF

HO, which is continually produced by aerobic metabolism, is a cytotoxic molecule when in high levels. However, low levels can act as a signaling molecule able to regulate the expression of stress responses, senescence, programmed cell death, plant growth, and development. Ascorbate peroxidase (APX) enzyme plays an essential role in the control of intracellular HO levels.

View Article and Find Full Text PDF

Fumarate and succinate are known to be present in prebiotic systems essential for the origin of life. The fumarate and succinate interconversion reactions have been conserved throughout evolution and are found in all living organisms. The fumarate and succinate interconversion is catalyzed by the enzymes succinate dehydrogenase (SDH) and fumarate reductase (FRD).

View Article and Find Full Text PDF

Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation.

View Article and Find Full Text PDF

Background/aim: 3-bromopyruvate (3BrPA) is an antitumor agent able to inhibit aerobic glycolysis and oxidative phosphorylation, therefore inducing cell death. However, cancer cells are also highly dependent of glutaminolysis and tricarboxylic acid cycle (TCA) regarding survival and 3BrPA action in these metabolic routes is poorly understood.

Materials And Methods: The effect of 3BrPA was characterized in mice liver and kidney mitochondria, as well as in human HepG2 cells.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent studies have demonstrated that succinate dehydrogenase (SDH) also contributes to mitochondrial ROS production.

View Article and Find Full Text PDF

3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA.

View Article and Find Full Text PDF