Researchers looking for sustainable materials with optimal mechanical properties may draw inspiration from a baseball tradition. For nearly 100 y, a mysterious mud harvested from an undisclosed river site in New Jersey (USA) has been the agent of choice in the USA's Major League Baseball for "de-glossing" new baseballs. It is unclear, however, what makes this "Rubbing Mud" work.
View Article and Find Full Text PDFWhen wet soil becomes fully saturated by intense rainfall, or is shaken by an earthquake, it may fluidize catastrophically. Sand-rich slurries are treated as granular suspensions, where the failure is related to an unjamming transition, and friction is controlled by particle concentration and pore pressure. Mud flows are modeled as gels, where yielding and shear-thinning behaviors arise from inter-particle attraction and clustering.
View Article and Find Full Text PDFSand seas are vast expanses of Earth's surface containing large areas of aeolian dunes-topographic patterns manifest from above-threshold winds and a supply of loose sand. Predictions of the role of future climate change for sand-sea activity are sparse and contradictory. Here we examine the impact of climate on all of Earth's presently-unvegetated sand seas, using ensemble runs of an Earth System Model for historical and future Shared Socioeconomic Pathway (SSP) scenarios.
View Article and Find Full Text PDFWherever a loose bed of sand is subject to sufficiently strong winds, aeolian dunes form at predictable wavelengths and growth rates. As dunes mature and coarsen, however, their growth trajectories become more idiosyncratic; nonlinear effects, sediment supply, wind variability and geologic constraints become increasingly relevant, resulting in complex and history-dependent dune amalgamations. Here we examine a fundamental question: do aeolian dunes stop growing and, if so, what determines their ultimate size? Earth's major sand seas are populated by giant sand dunes, evolved over tens of thousands of years.
View Article and Find Full Text PDFSoil creeps imperceptibly but relentlessly downhill, shaping landscapes and the human and ecological communities that live within them. What causes this granular material to 'flow' at angles well below repose? The unchallenged dogma is churning of soil by (bio)physical disturbances. Here we experimentally render slow creep dynamics down to micron scale, in a laboratory hillslope where disturbances can be tuned.
View Article and Find Full Text PDFHow do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study-and a complementary real-world case study-to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot.
View Article and Find Full Text PDFAs the 21st century uncovers ever-increasing volumes of asbestos and asbestos-contaminated waste, we need a new way to stop 'grandfather's problem' from becoming that of our future generations. The production of inexpensive, mechanically strong, heat resistant building materials containing asbestos has inevitably led to its use in many public and residential buildings globally. It is therefore not surprising that since the asbestos boom in the 1970s, some 30 years later, the true extent of this hidden danger was exposed.
View Article and Find Full Text PDFOne of the simplest questions in riverine science remains unanswered: "What determines the width of rivers?" While myriad environmental and geological factors have been proposed to control alluvial river size, no accepted theory exists to explain this fundamental characteristic of river systems. We combine analysis of a global dataset with a field study to support a simple hypothesis: River geometry adjusts to the threshold fluid entrainment stress of the most resistant material lining the channel. In addition, we demonstrate how changes in bank strength dictate planform morphology by exerting strong control on channel width.
View Article and Find Full Text PDFPlato envisioned Earth's building blocks as cubes, a shape rarely found in nature. The solar system is littered, however, with distorted polyhedra-shards of rock and ice produced by ubiquitous fragmentation. We apply the theory of convex mosaics to show that the average geometry of natural two-dimensional (2D) fragments, from mud cracks to Earth's tectonic plates, has two attractors: "Platonic" quadrangles and "Voronoi" hexagons.
View Article and Find Full Text PDFWhen stressed sufficiently, solid materials yield and deform plastically via reorganization of microscopic constituents. Indeed, it is possible to alter the microstructure of materials by judicious application of stress, an empirical process utilized in practice to enhance the mechanical properties of metals. Understanding the interdependence of plastic flow and microscopic structure in these nonequilibrium states, however, remains a major challenge.
View Article and Find Full Text PDFThe yield transition of amorphous materials is characterized by a swift increase of energy dissipation. The connection between particle dynamics, dissipation, and overall material rheology, however, has still not been elucidated. Here, we take a new approach relating trajectories to yielding, using a custom built interfacial stress rheometer, which allows for measurement of shear moduli (G',G'') of a dense athermal suspension's microstructure while simultaneously tracking particle trajectories undergoing cyclic shear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope.
View Article and Find Full Text PDFSoil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes.
View Article and Find Full Text PDFRiver currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth's surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFStriking shapes in nature have been documented to result from chemical precipitation - such as terraced hot springs and stromatolites - which often proceeds via surface-normal growth. Another studied class of objects is those whose shape evolves by physical abrasion - the primary example being river and beach pebbles - which results in shape-dependent surface erosion. While shapes may evolve in a self-similar manner, in neither growth nor erosion can a surface remain invariant.
View Article and Find Full Text PDFRiver bed-load transport is a kind of dense granular flow, and such flows are known to segregate grains. While gravel-river beds typically have an "armoured" layer of coarse grains on the surface, which acts to protect finer particles underneath from erosion, the contribution of granular physics to river-bed armouring has not yet been investigated. Here we examine these connections in a laboratory river with bimodal sediment size, by tracking the motion of particles from the surface to deep inside the bed, and find that armour develops by two distinct mechanisms.
View Article and Find Full Text PDFColloidal aggregation is a canonical example of disordered growth far from equilibrium and has been extensively studied for the case of spherical monomers. Many particles encountered in industry and the environment are highly elongated; however, the control of particle shape on aggregation kinetics and structure is not well-known. Here, we explore this control in laboratory experiments that document aqueous diffusion and aggregation of two different elongated colloids: natural asbestos fibers and synthetic glass rods, with similar aspect ratios of about 5:1.
View Article and Find Full Text PDFSpatial and temporal variations in rainfall are hypothesized to influence landscape evolution through erosion and sediment transport by rivers. However, determining the relation between rainfall and river dynamics requires a greater understanding of the feedbacks between flooding and a river's capacity to transport sediment. We analyzed channel geometry and stream-flow records from 186 coarse-grained rivers across the United States.
View Article and Find Full Text PDFThe discovery of remarkably rounded pebbles by the rover Curiosity, within an exhumed alluvial fan complex in Gale Crater, presents some of the most compelling evidence yet for sustained fluvial activity on Mars. While rounding is known to result from abrasion by inter-particle collisions, geologic interpretations of sediment shape have been qualitative. Here we show how quantitative information on the transport distance of river pebbles can be extracted from their shape alone, using a combination of theory, laboratory experiments and terrestrial field data.
View Article and Find Full Text PDFFluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2014
Water flowing over a loose granular bed organizes into a braided river, a network of ephemeral and interacting channels. The temporal and spatial evolution of this network of braided channels is not yet quantitatively understood. In ∼ 1 m-scale experiments, we found that individual channels exhibit a self-similar geometry and near-threshold transport conditions.
View Article and Find Full Text PDFRiver-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out.
View Article and Find Full Text PDF