Publications by authors named "Douglas J Fansher"

Evolution of P450 BM3 is a topic of extensive research, but screening the various substrate/reaction combinations remains a time-consuming process. Indigo production has the potential to serve as a simple high-throughput method for reaction screening, as bacterial colonies expressing indigo (+) variants can be visually identified their blue phenotype. Indigo (+) single variants, indigo (-) single variants and a combinatorial library, containing mutations that enable the blue phenotype, were screened for their ability to hydroxylate a panel of 12 aromatic compounds using the 4-aminoantipyrine colorimetric assay.

View Article and Find Full Text PDF

Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context.

View Article and Find Full Text PDF

Michael addition reactions are highly useful in organic synthesis and are commonly accomplished using organocatalysts. However, the corresponding biocatalytic Michael additions are rare, typically lack synthetically useful substrate scope, and suffer from low stereoselectivity. Herein we report a biocatalytic nitro-Michael addition, catalyzed by NahE, that proceeds with low catalyst loading at room temperature in moderate to excellent enantioselectivity and high yields.

View Article and Find Full Text PDF