We have demonstrated near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for simultaneously probing the surface chemistry, surface molecular orientation, degree of order, and electronic structure of carbon nanotubes and related nanomaterials. Specifically, we employ NEXAFS in the study of single-walled carbon nanotube and multi-walled carbon nanotube powders, films, and arrays, as well as of boron nitride nanotubes. We have focused on the advantages of NEXAFS as an exciting, complementary tool to conventional microscopy and spectroscopy for providing chemical and structural information about nanoscale samples.
View Article and Find Full Text PDFProbing surface order as well as the degree of structural modification in carbon nanotube systems is of fundamental importance for incorporation of these materials into practical functional devices. The current study pertains to the analysis of the surface order of vertically-aligned single-walled and multi-walled carbon nanotube arrays of varying length and composition by means of near-edge X-ray fine structure spectroscopy (NEXAFS). Both NEXAFS and scanning electron microscopy (SEM) studies concluded that the nanotubes in these samples were oriented vertically to the plane of the surface.
View Article and Find Full Text PDFThe main obstacle to widespread application of single-wall carbon nanotubes is the lack of reproducible synthesis methods of pure material. We describe a new growth method for single-wall carbon nanotubes that uses molecular beams of precursor gases that impinge on a heated substrate coated with a catalyst thin film. In this growth environment the gas and the substrate temperature are decoupled and carbon nanotube growth occurs by surface reactions without contribution from homogeneous gas-phase reactions.
View Article and Find Full Text PDFWe use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited . Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process.
View Article and Find Full Text PDFWe propose a model of persistent step flow, emphasizing dominant kinetic processes and strain effects. Within this model, we construct a morphological phase diagram, delineating a regime of step flow from regimes of step bunching and island formation. In particular, we predict the existence of concurrent step bunching and island formation, a new growth mode that competes with step flow for phase space, and show that the deposition flux and temperature must be chosen within a window in order to achieve persistent step flow.
View Article and Find Full Text PDFArrays of vertically aligned carbon nanofibers (VACNFs) provide structures that are well suited for the direct integration and manipulation of molecular-scale phenomena within intact, live cells. VACNFs are fabricated via a combination of microfabrication techniques and catalytic plasma-enhanced chemical vapor deposition. In this chapter, we discuss the synthesis of VACNFs and detail the methods for introducing these arrays into the intracellular domain of mammalian cells for the purpose of delivering large macromolecules, specifically plasmid DNA, on a massively parallel basis.
View Article and Find Full Text PDFDiffraction gratings are mainly manufactured by mechanical ruling, interference lithography, or resin replication, which generally require expensive equipment, complicated procedures, and a stable environment. We describe the controlled growth of self-organized microscale ZnO comb gratings by a simple one-step thermal evaporation and condensation method. The ZnO combs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline ZnO nanowires or nanobelts with periods in the range of 0.
View Article and Find Full Text PDFTheoretical predictions--motivated by recent advances in epitaxial engineering--indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers.
View Article and Find Full Text PDF