Effective uranium (U) capture is required for the remediation of contaminated solutes associated with the nuclear fuel cycle, including fuel reprocessing effluents, decommissioning, or nuclear accident cleanup. Here, interactions between uranyl cations (UO ) and a Mg-Al layered double hydroxide (LDH) were investigated using two types of uranyl-bearing LDH colloids. The first (ULDH) was synthesized by coprecipitation with 10% of Mg substituted by UO .
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
This study proposed and examined a new process flowsheet for treating neutral mine drainage (NMD) from an open-pit gold mine. The process consisted of three sequential stages: (1) in situ hydrotalcite (HT) precipitation; (2) low-cost carbon substrate driven microbial sulfate reduction; and (3) ferrosol reactive barrier for removing biogenic dissolved hydrogen sulfide (HS). For concept validation, laboratory-scale columns were established and operated for a 140-days period with key process performance parameters regularly measured.
View Article and Find Full Text PDFHistorical use of aqueous film forming foams (AFFF) containing per- and poly-fluoroalkyl substances (PFAS) for fire-fighting activities has contributed to widespread contamination of infrastructure which can represent an ongoing source of PFAS to the surrounding environment. A concrete fire training pad with historical use of Ansulite and Lightwater AFFF formulations had PFAS concentrations measured to quantify spatial variability of PFAS within the pad. Surface chips and whole cores of concrete through to the underlying aggregate base were collected over the 24 × 9 m concrete pad and depth profiles of PFAS concentrations in nine cores were analysed.
View Article and Find Full Text PDFCorrection for 'Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt' by Prashant Srivastava , , 2022, , 1678-1689, https://doi.org/10.1039/D2AY00221C.
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS) in water are typically present in their ionic (nonvolatile) forms; however, these can transition to their nonionic (volatile) forms when in contact with organic solvents and organic matrices. In particular, when PFAS are dissolved in organic solvents such as residues left from firefighting foams, fuels, and bitumen present in asphalt, the equilibrium between ionic and nonionic forms can trend toward more volatile nonionic forms of PFAS. We assessed the volatility of common PFAS based on calculated and available experimental data across ambient temperature ranges experienced by airfield pavements and at elevated temperatures associated with reworking asphalts for reuse.
View Article and Find Full Text PDFThe legacy use of aqueous film-forming foam (AFFF) has led to the generation of large volumes of per- and poly-fluoroalkyl substances (PFAS)-contaminated asphalt materials, especially at airports and fire training areas. The management of such PFAS-contaminated asphalt materials requires an understanding of PFAS concentrations in these materials. This study, therefore, aimed to develop a suitable extraction methodology for the analysis of 22 target PFAS (, carboxylic acids, sulfonic acids and fluorotelomers) in asphalt materials.
View Article and Find Full Text PDFThis study proposed and validated a method integrating in situ hydrotalcite precipitation (Virtual Curtain™ (VC) technology) with bioprocess for treating a cyanide (CN)-augmented (ca. 5 mg-CN L) sulfate-laden neutral mine drainage, from a waste rock dump (WD2) of an Australian gold mine. Efficacies of various carbon (C) sources (ethanol, lactate, and two natural substrates; Eucalyptus wood sawdust (EW) and Typha biomass (TB)) for promoting microbial reduction in both: CN-augmented WD2 water and VC-treated CN-augmented WD2 water were assessed in a 60-days microcosms study at 30 °C.
View Article and Find Full Text PDFSeveral years after decommissioning, a magnesium dross and mixed waste heap at a former industrial facility is still reactive, as evidenced by the emission of heat, Volatile Organic Carbon (VOCs), acetylene (CH), cyanide (HCN) and ammonia (NH) from deep, discordant, epigenetic fissures. To evaluate the longer-term stability of the waste heap material, four cores were collected to evaluate vertical variations in temperature, moisture, gas composition, geochemistry, and mineralogy. Temperature increased with depth and peaked at around 8 m, reaching in excess of 90 °C.
View Article and Find Full Text PDFDredging and in situ adsorbent inactivation are two methods which are frequently used in eutrophic water bodies such as ponds, lakes and estuaries to control internal phosphorus (P) loading from sediments. However, their effects and modes on the control of sediment P loading has been seldom compared. In this study, a long-term sediment core incubation experiment in the field was undertaken to investigate changes in sediment P loading (P fluxes, supply ability and forms of P and transformation) comparing two remediation techniques, that of lanthanum-modified bentonite (LMB) addition or dredging to a control.
View Article and Find Full Text PDFHydrotalcite precipitation is a promising technology for the on-site treatment of acid mine drainage (AMD). This technology is underpinned by the synthesis of hydrotalcite that can effectively remove various contaminants. However, hydrotalcite precipitation has only limited capacity to facilitate sulfate removal from AMD.
View Article and Find Full Text PDFLanthanum-modified bentonite (LMB, commercially called Phoslock®) has been widely applied in freshwater systems to manage eutrophication. Little is known, however, about its behaviour and efficiency in binding filterable reactive phosphorus (FRP) in saline environments. We assessed if LMB would adsorb phosphate over a range of salinities (0-32 ppth) comparing the behaviour in seawater salts and equivalent concentrations of NaCl.
View Article and Find Full Text PDFThere is increasing interest in the potential of trees to sequester carbon (C) in above- and below-ground stocks to mitigate against increasing concentrations of greenhouse gases (GHG). This study determined whether pasture-tree (PT) systems influence soil C stocks compared with open pasture (OP) by sampling four sites with trees aged 14 to16 years. Poplars (Populus spp.
View Article and Find Full Text PDFLanthanum Modified Bentonite (LMB; Phoslock®) is used to mitigate eutrophication by binding phosphate released from sediments. This study investigated the fate of lanthanum (La) from LMB in water, sediment, macrophytes, and chironomid larvae in Lake Rauwbraken (The Netherlands). Before the LMB application, water column filterable La (FLa) was 0.
View Article and Find Full Text PDFBiological reduction of soluble uranium from U(VI) to insoluble U(IV) coupled to the oxidation of an electron donor (hydrogen or organic compounds) is a potentially cost-efficient way to reduce the U concentrations in contaminated waters to below regulatory limits. A variety of microorganisms originating from both U contaminated and non-contaminated environments have demonstrated U(VI) reduction capacity under anaerobic conditions. Bioreduction of U(VI) is considered especially promising for in situ remediation, where the activity of indigenous microorganisms is stimulated by supplying a suitable electron donor to the subsurface to contain U contamination to a specific location in a sparingly soluble form.
View Article and Find Full Text PDFThe use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies.
View Article and Find Full Text PDFMicrobial reduction of nitrate in the presence of zero-valent iron (ZVI) was evaluated in anoxic shake flasks to assess the feasibility of ZVI-facilitated biological nitrate removal. Nitrate was completely reduced within 3days in the presence of both ZVI and microorganisms (ZVI-M). In contrast, only 75% of the nitrate was reduced in the presence of ZVI but without microbial inoculum.
View Article and Find Full Text PDFThe presence of organic matter (OM) has a profound impact on uranium (U) redox cycling, either limiting or promoting the mobility of U via binding, reduction, or complexation. To understand the interactions between OM and U, we characterised U oxidation state and speciation in nine OM-rich sediment cores (18 samples), plus a lignite sample from the Mulga Rock polymetallic deposit in Western Australia. Uranium was unevenly dispersed within the analysed samples with 84% of the total U occurring in samples containing >21 wt % OM.
View Article and Find Full Text PDFSince the advent of large-scale U mining, processing, and enrichment for energy or weapons production, efficient capture and disposal of U, transuranics, and daughter radionuclides has constituted an omnipresent challenge. In this study, we investigated uranyl (UO ) sequestration by hydrotalcite (HTC) as a coprecipitation or surface adsorption reaction scenario. The master variables of the study were pH (7.
View Article and Find Full Text PDFClay-based phosphorus (P) sorbents have been increasingly used as geoengineering materials for the management sediment-derived internal P loading in eutrophic lakes. However, the long-term behavior of these sorbents has remained elusive along with their response to burial under suspended particulate matter (SPM), and their effect on macroinvertebrate communities occupying dynamic regions at the sediment-water interface of shallow and turbid lakes. In this study, field mesocosm experiments were undertaken in Lake Chaohu, China, to study the effects of the application of lanthanum-modified bentonite (LMB) and thermally-modified calcium-rich attapulgite (TCAP) on sediment internal P loading and to assess their influence on macroinvertebrate community structure.
View Article and Find Full Text PDFThe kinetics and mechanisms of the reduction of NO in solution to NH by 1.5μm diameter zero-valent iron (ZVI) particles has been examined. The effects of initial pH, ZVI particle concentration and initial NO concentration were also investigated.
View Article and Find Full Text PDFWith the advent of phosphorus (P)-adsorbent materials and techniques to address eutrophication in aquatic systems, there is a need to develop interpretive techniques to rapidly assess changes in potential nutrient limitation. In a trial application of the P-adsorbent, lanthanum-modified bentonite (LMB) to an impounded section of the Canning River, Western Australia, a combination of potential P, nitrogen (N) and silicon (Si) nutrient limitation diagrams based on dissolved molar nutrient ratios and actual dissolved nutrient concentrations have been used to interpret trial outcomes. Application of LMB resulted in rapid and effective removal of filterable reactive P (FRP) from the water column and also effectively intercepted FRP released from bottom sediments until the advent of a major unseasonal flood event.
View Article and Find Full Text PDFMany urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended to switch the ponds from a turbid phytoplankton-dominated state to a clear-water state with a low phytoplankton biomass.
View Article and Find Full Text PDF