Increasing tree diversity is considered a key management option to adapt forests to climate change. However, the effect of species diversity on a forest's ability to cope with extreme drought remains elusive. In this study, we assessed drought tolerance (xylem vulnerability to cavitation) and water stress (water potential), and combined them into a metric of drought-mortality risk (hydraulic safety margin) during extreme 2021 or 2022 summer droughts in five European tree diversity experiments encompassing different biomes.
View Article and Find Full Text PDFBackground And Aims: Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground.
View Article and Find Full Text PDFThe Citarum watershed and the Saguling reservoir are vital natural resources in Indonesia, affecting the livelihood of West Java and the DKI Jakarta population. This study aimed to assess the soil erosion in the Upper Citarum watershed and identify its source. The study used the fallout radionuclide technique, geochemical tracers, and an unmixing model to measure soil erosion and the contribution of suspended sediment sources due to erosion.
View Article and Find Full Text PDFPlant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.
View Article and Find Full Text PDFParticulate matter (PM) pollution poses a significant threat to human health. Greenery, particularly trees, can act as effective filters for PM, reducing associated health risks. Previous studies have indicated that tree traits play a crucial role in determining the amount of PM accumulated on leaves, although findings have often been site-specific.
View Article and Find Full Text PDFEctomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil.
View Article and Find Full Text PDFFungi are known to exert a significant influence over soil organic matter (SOM) turnover, however understanding of the effects of fungal community structure on SOM dynamics and its consequences for ecosystem fertility is fragmentary. Here we studied soil fungal guilds and SOM decomposition processes along a fertility gradient in a temperate mountain beech forest. High-throughput sequencing was used to investigate fungal communities.
View Article and Find Full Text PDFForests on steep slopes constitute a significant proportion of European mountain areas and are important as production and protection forests. This study describes the soil fungal community structure in a European beech-dominated mountain forest stands in the Northern Calcareous Alps and investigates how it is determined by season and soil properties. Samples were collected at high spatial resolution in an area of ca.
View Article and Find Full Text PDFFine roots and above-ground litterfall play a pivotal role in carbon dynamics in forests. Nonetheless, direct estimation of stocks of fine roots remains methodologically challenging. Models are thus widely used to estimate these stocks and help elucidate drivers of fine root growth and turnover, at a range of scales.
View Article and Find Full Text PDFWe evaluated whether changes in fine root non-structural carbohydrate reserves of Fagus sylvatica and Pinus sylvestris trees influence potential enzymatic activities of their ectomycorrhizal symbionts from winter towards spring reactivation, and whether these changes influence potential soil enzymatic activities. We analyzed sugar and starch concentrations in the fine roots of Fagus sylvatica and Pinus sylvestris and potential activities of ß-glucosidase, ß-xylosidase, and cellobiohydrolase (as proxies for carbon-degrading enzymes) as well as leucine aminopeptidase and chitinase (as proxies for nitrogen-degrading enzymes) of their dominant ectomycorrhizal symbionts as well as in the soil. Sugar concentrations in the fine roots were significantly positively correlated with enzymatic activities of the ectomycorrhizal symbionts.
View Article and Find Full Text PDFBackground: Land use changes and related land management practices significantly alter soil physicochemical properties; however, their effects on the soil microbial community structure are still unclear. In this study, we used automated ribosomal intergenic spacer analysis to determine the fungal and bacterial community composition in soils from different land use areas in the Ethiopian highlands. Soil samples were collected from five areas with different land uses, natural forest, eucalyptus plantation, exclosure, grassland and cropland, which had all historically been natural forest.
View Article and Find Full Text PDFLand use change alters biodiversity and soil quality and thus affects ecosystem functions. This study investigated the effects of changes in land use on major soil quality indicators. Soil samples were taken from a depth of 0-10 cm (top soil) under four major land uses (cropland, grassland, area exclosure, eucalyptus plantation) with similar land use change histories for analysis, and soil from a nearby natural forest was used as a reference.
View Article and Find Full Text PDFThe tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics.
View Article and Find Full Text PDFBackground And Aims: , and co-exist at the alpine tree line, and can have different mycorrhizal communities. The activity and diversity of mycorrhizal fungi are considered to be important factors in regulation of soil function.
Methods: At a tree line site and a lower elevation site in the Austrian Alps, the community structure of ectomycorrhiza on and was determined.
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science.
View Article and Find Full Text PDFWithin branched root systems, a distinct heterogeneity of traits exists. Knowledge about the ecophysiology of different root types is critical to understand root system functioning. Classification schemes have to match functional root types as closely as possible to be used for sampling and modeling.
View Article and Find Full Text PDFElevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition.
View Article and Find Full Text PDFMorphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.
View Article and Find Full Text PDFIraq is suffering from depleted uranium (DU) pollution in many regions and the effects of this may harm public health through poisoning and increased incidence of various cancers and birth defects. DU is a known carcinogenic agent. About 1200 tonnes of ammunition were dropped on Iraq during the Gulf Wars of 1991 and 2003.
View Article and Find Full Text PDFAs a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species.
View Article and Find Full Text PDFIn a free-air carbon dioxide (CO(2)) enrichment study (BangorFACE), Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one-, two- and three-species mixtures (n = 4). The trees were exposed to ambient or elevated CO(2) (580 μmol mol(-1)) for 4 yr, and aboveground growth characteristics were measured. In monoculture, the mean effect of CO(2) enrichment on aboveground woody biomass was + 29, + 22 and + 16% for A.
View Article and Find Full Text PDFWe measured the effect of elevated atmospheric CO(2) on atmospheric nitrogen (N(2)) fixation in the tree species Alnus glutinosa growing in monoculture or in mixture with the non-N(2)-fixing tree species Betula pendula and Fagus sylvatica. We addressed the hypotheses that (1) N(2) fixation in A. glutinosa will increase in response to increased atmospheric CO(2) concentrations, when growing in monoculture, (2) the impact of elevated CO(2) on N(2) fixation in A.
View Article and Find Full Text PDF