Background: Repurposing dantrolene to treat Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy.
Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated.
Methods: The bioavailability of intranasal ERFR was measured in 2 and 9-11-month-old C57BL/6J mice.
Background: Repurposing dantrolene as a potential disease-modifying treatment for Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy.
Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated.
Methods: The bioavailability of intranasal ERFR was measured in 2 months and 9-12 month old C57BL/6J male mice.
Mononuclear Mo and W enzymes require a unique ligand known as molybdopterin (MPT). This ligand binds the metal through a dithiolene chelate, and the dithiolene bridges a reduced pyranopterin group. Pyran scission and formation have been proposed as a reaction of the MPT ligand that may occur within the enzymes to adjust reactivity at the Mo atom.
View Article and Find Full Text PDFThe large family of mononuclear molybdenum and tungsten enzymes all possess the special ligand molybdopterin (MPT), which consists of a metal-binding dithiolene chelate covalently bound to a pyranopterin group. MPT pyran cyclization/scission processes have been proposed to modulate the reactivity of the metal center during catalysis. We have designed several small-molecule models for the Mo-MPT cofactor that allow detailed investigation into how pyran cyclization modulates electronic communication between the dithiolene and pterin moieties and how this cyclization alters the electronic environment of the molybdenum catalytic site.
View Article and Find Full Text PDFThe conserved pterin dithiolene ligand that coordinates molybdenum (Mo) in the cofactor (Moco) of mononuclear Mo enzymes can exist in both a tricyclic pyranopterin dithiolene form and as a bicyclic pterin-dithiolene form as observed in protein crystal structures of several bacterial molybdoenzymes. Interconversion between the tricyclic and bicyclic forms via pyran scission and cyclization has been hypothesized to play a role in the catalytic mechanism of Moco. Therefore, understanding the interconversion between the tricyclic and bicyclic forms, a type of ring-chain tautomerism, is an important aspect of study to understand its role in catalysis.
View Article and Find Full Text PDF