MiRNAs play crucial roles in a broad spectrum of biological processes, both physiological and pathological. Different reports implicate miR-205 in the control of breast stem cell properties. Differential miR-205 expression has been observed in different stages of mammary gland development and maturation.
View Article and Find Full Text PDFFhit protein is lost in cancers of most, perhaps all, cancer types; when restored, it can induce apoptosis and suppress tumorigenicity, as shown in vitro and in mouse tumor models in vivo. Following protein cross-linking and proteomics analyses, we characterized a Fhit protein complex involved in triggering Fhit-mediated apoptosis. The complex includes the heat-shock chaperonin pair, HSP60/10, which is likely involved in importing Fhit into the mitochondria, where it interacts with ferredoxin reductase, responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin, in electron transport chain complex III.
View Article and Find Full Text PDFBone metastasis is one of the most common forms of metastasis from a number of different primary carcinomas. MicroRNAs (miRNAs) are short, endogenous RNAs that negatively regulate gene expression to control essential pathways, including those involved in bone organogenesis and homeostasis. As these pathways are often hijacked during bone metastasis, it is not surprising that miRNAs can also influence bone metastasis formation.
View Article and Find Full Text PDFAccurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls.
View Article and Find Full Text PDFThe identification of the molecular mechanisms involved in the establishment of the resistant phenotype represents a critical need for the development of new strategies to prevent or overcome cancer resistance to anti-neoplastic treatments.Breast cancer is the leading cause of cancer-related deaths in women, and resistance to chemotherapy negatively affects patient outcomes. Here, we investigated the potential role of miR-302b in the modulation of breast cancer cell resistance to cisplatin.
View Article and Find Full Text PDFExpert Rev Endocrinol Metab
October 2015
MicroRNAs are small non coding RNAs that typically inhibit the translation and stability of messenger RNAs, controlling genes involved in cellular processes such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Not surprisingly, microRNAs are also aberrantly expressed in cancer and promote tumorigenesis by disrupting these vital cellular functions. In this review, we first broadly summarize the role of microRNAs in breast cancer and Estrogen Receptor alpha signaling.
View Article and Find Full Text PDFMicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3.
View Article and Find Full Text PDF