Publications by authors named "Douglas E Smith"

Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a pre-formed prohead shell in ~5 min at room temperature in vitro. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) is responsible for maintaining brain homeostasis through nutrient delivery and waste removal for the central nervous system (CNS). Here, we demonstrate extensive CSF flow throughout the peripheral nervous system (PNS) by tracing distribution of multimodal 1.9-nanometer gold nanoparticles, roughly the size of CSF circulating proteins, infused within the lateral cerebral ventricle (a primary site of CSF production).

View Article and Find Full Text PDF

Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e.

View Article and Find Full Text PDF

Unlabelled: Cerebrospinal fluid (CSF) is an aqueous solution responsible for nutrient delivery and waste removal for the central nervous system (CNS). The three-layer meningeal coverings of the CNS support CSF flow. Peripheral nerves have an analogous three-layer covering consisting of the epineurium, perineurium, and endoneurium.

View Article and Find Full Text PDF

Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers.

View Article and Find Full Text PDF

Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers.

View Article and Find Full Text PDF

Short carbon fiber-reinforced composite materials produced by large-area additive manufacturing (LAAM) are attractive due to their lightweight, favorable mechanical properties, multifunctional applications, and low manufacturing costs. However, the physical and mechanical properties of short carbon-fiber-reinforced composites 3D printed via LAAM systems remain below expectations due in part to the void formation within the bead microstructure. This study aimed to assess void characteristics including volume fraction and sphericity within the microstructure of 13 wt% short carbon fiber acrylonitrile butadiene styrene (SCF/ABS).

View Article and Find Full Text PDF

A discontinuous fiber-reinforced polymer composite (DFRPC) provides superior mechanical performances in material extrusion additive manufacturing (MEAM) parts, and thus promotes their implementations in engineering applications. However, the process-induced structural defects of DFRPCs increase the probability of pre-mature failures as the manufactured parts experience complicated external loads. In light of this, the meso-structures of the MEAM parts have been discussed previously, while systematic analyses reviewing the studies of the micro-structural formations of the composites are limited.

View Article and Find Full Text PDF

Numerical studies for polymer composites deposition additive manufacturing have provided significant insight promoting the rapid development of the technology. However, little of existing literature addresses the complex yet important polymer composite melt flow-fiber orientation coupling during deposition. This paper explores the effect of flow-fiber interaction for polymer deposition of 13 wt.

View Article and Find Full Text PDF

We previously introduced the use of DNA molecules for calibration of biophysical force and displacement measurements with optical tweezers. Force and length scale factors can be determined from measurements of DNA stretching. Trap compliance can be determined by fitting the data to a nonlinear DNA elasticity model, however, noise/drift/offsets in the measurement can affect the reliability of this determination.

View Article and Find Full Text PDF

Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the 'B-A scrunchworm', predicts that 'A-philic' sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor.

View Article and Find Full Text PDF

Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >10-fold decrease in phage yield, but we identified nine mutants with partial activity.

View Article and Find Full Text PDF

ATP-powered viral packaging motors are among the most powerful biomotors known. Motor subunits arranged in a ring repeatedly grip and translocate the DNA to package viral genomes into capsids. Here, we use single DNA manipulation and rapid solution exchange to quantify how nucleotide binding regulates interactions between the bacteriophage T4 motor and DNA substrate.

View Article and Find Full Text PDF

ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role.

View Article and Find Full Text PDF

Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a preformed prohead shell in ~5 min at room temperature. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers.

View Article and Find Full Text PDF

The unwinding of double-stranded DNA is a frequently occurring event during the cellular processes of DNA replication, repair, and transcription. To help further investigate properties of this fundamental process as well as to study proteins acting on unzipped DNA at the single molecule level, we describe a novel method for efficient preparation of long DNA constructs (arbitrary sequences of many kilobasepairs (kbp) in length) that can be forcibly unzipped and manipulated with optical tweezers or other single-molecule manipulation techniques. This method utilizes PCR, a nicking endonuclease, and strand displacement synthesis by the Klenow fragment of DNA polymerase I to introduce labeled nucleotides at appropriate positions to facilitate unzipping of the DNA by application of force.

View Article and Find Full Text PDF

We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation.

View Article and Find Full Text PDF

In many viruses molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems.

View Article and Find Full Text PDF

During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function.

View Article and Find Full Text PDF

We report evidence for an unconventional type of allosteric regulation of a biomotor. We show that the genome-packaging motor of phage ϕ29 is regulated by a sensor that detects the density and conformation of the DNA packaged inside the viral capsid, and slows the motor by a mechanism distinct from the effect of a direct load force on the motor. Specifically, we show that motor-ATP interactions are regulated by a signal that is propagated allosterically from inside the viral shell to the motor mounted on the outside.

View Article and Find Full Text PDF

Optical tweezers facilitate measurement of piconewton-level forces and nanometer-level displacements and have broad applications in biophysics and soft matter physics research. We have shown previously that DNA molecules can be used as metrology standards to define such measurements. Force-extension measurements on two DNA molecules of different lengths can be used to determine four necessary measurement parameters.

View Article and Find Full Text PDF

Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state.

View Article and Find Full Text PDF

We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor.

View Article and Find Full Text PDF

How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips.

View Article and Find Full Text PDF

Many viruses use molecular motors that generate large forces to package DNA to near-crystalline densities inside preformed viral proheads. Besides being a key step in viral assembly, this process is of interest as a model for understanding the physics of charged polymers under tight 3D confinement. A large number of theoretical studies have modeled DNA packaging, and the nature of the molecular dynamics and the forces resisting the tight confinement is a subject of wide debate.

View Article and Find Full Text PDF