A simple, repeatable method for determination of the degree of grain refinement in irradiated Uranium-Molybdenum fuels has been developed. This method involves mechanical potting and polishing of samples along with examination using a scanning electron microscope located outside of a hot cell. The commercially available software package Mathematica was used to determine the degree of grain refinement by way of a built-in iterative active contour method of image segmentation.
View Article and Find Full Text PDFThis article discusses the unique material manufacturing process of self-propagating high temperature synthesis (SHS) as applied to the making of porous biomaterials. Porous materials have long been considered as the first step toward in-vivo bone tissue engineering and the creation of patient life-time implants. The authors have approached this challenge by utilizing combustion synthesis, to create novel materials such as NiTi + TiC as well as porous forms of materials that are commonly accepted for biomedical applications such as tricalcium phosphate and hydroxyapatite.
View Article and Find Full Text PDF