Introduction: Women are at elevated risk for certain cardiovascular diseases, including pulmonary arterial hypertension, Alzheimer's disease, and vascular complications of diabetes. Angiotensin II (AngII), a circulating stress hormone, is elevated in cardiovascular disease; however, our knowledge of sex differences in the vascular effects of AngII are limited. We therefore analyzed sex differences in human endothelial cell response to AngII treatment.
View Article and Find Full Text PDFIdentifications of novel genetic signals conferring susceptibility to human complex diseases is pivotal to the disease diagnosis, prevention, and treatment. Genetic association study is a powerful tool to discover candidate genetic signals that contribute to diseases, through statistical tests for correlation between the disease status and genetic variations in study samples. In such studies with a case-control design, a standard practice is to perform the Cochran-Armitage (CA) trend test under an additive genetic model, which suffers from power loss when the model assumption is wrong.
View Article and Find Full Text PDFSocioeconomic status (SES), living in poverty, and other social determinants of health contribute to health disparities in the United States. African American (AA) men living below poverty in Baltimore City have a higher incidence of mortality when compared to either white males or AA females living below poverty. Previous studies in our laboratory and elsewhere suggest that environmental conditions are associated with differential gene expression (DGE) patterns in peripheral blood mononuclear cells (PBMCs).
View Article and Find Full Text PDFHistone deacetylase 9 (HDAC9) has recently been demonstrated as a key regulator of vascular smooth muscle cell (VSMC) phenotype and is associated with abdominal aortic calcification, myocardial infarction, and ischemic stroke. It is uncertain whether HDAC9 is also implicated in other VSMC-driven diseases. Our objective was to assess associations between abdominal aortic calcification-associated genetic variation in HDAC9 and VSMC-associated phenotypes.
View Article and Find Full Text PDFThe prevalence of hypertension among African Americans (AAs) in the US is among the highest of any demographic and affects over two-thirds of AA women. Previous data from our laboratory suggest substantial differential gene expression (DGE) of mRNAs and microRNAs (miRNAs) exists within peripheral blood mononuclear cells (PBMCs) isolated from AA and white women with or without hypertension. We hypothesized that DGE by race may contribute to racial differences in hypertension.
View Article and Find Full Text PDFAccurate predictions across multiple fields of microbiome research have far-reaching benefits to society, but there are few widely accepted quantitative tools to make accurate predictions about microbial communities and their functions. More discussion is needed about the current state of microbiome analysis and the tools required to overcome the hurdles preventing development and implementation of predictive analyses. We summarize the ideas generated by participants of the Mid-Atlantic Microbiome Meet-up in January 2019.
View Article and Find Full Text PDFCirculating extracellular RNAs (exRNAs) are potential biomarkers of disease. We thus hypothesized that age-related changes in exRNAs can identify age-related processes. We profiled both large and small RNAs in human serum to investigate changes associated with normal aging.
View Article and Find Full Text PDFOxid Med Cell Longev
March 2018
Oxidative stress is thought to contribute to aging and age-related diseases, such as cardiovascular and neurodegenerative diseases, and is a risk factor for systemic arterial hypertension. Previously, we reported differential mRNA and microRNA (miRNA) expression between African American (AA) and white women with hypertension. Here, we found that the poly-(ADP-ribose) polymerase 1 (PARP-1), a DNA damage sensor protein involved in DNA repair and other cellular processes, is upregulated in AA women with hypertension.
View Article and Find Full Text PDFSystemic arterial hypertension is an important cause of cardiovascular disease morbidity and mortality. African Americans are disproportionately affected by hypertension, in fact the incidence, prevalence, and severity of hypertension is highest among African American (AA) women. Previous data suggests that differential gene expression influences individual susceptibility to selected diseases and we hypothesized that this phenomena may affect health disparities in hypertension.
View Article and Find Full Text PDFSince the discovery of extracellular RNA (exRNA) in circulation and other bodily fluids, there has been considerable effort to catalog and assess whether exRNAs can be used as markers for health and disease. A variety of exRNA species have been identified including messenger RNA and noncoding RNA such as microRNA (miRNA), small nucleolar RNA, transfer RNA, and long noncoding RNA. Age-related changes in exRNA abundance have been observed, and it is likely that some of these transcripts play a role in aging.
View Article and Find Full Text PDFThe UDP-glucuronosyltransferase (UGT) 2B enzymes are important in the detoxification of a variety of endogenous and exogenous compounds, including many hormones, drugs, and carcinogens. Identifying novel mechanisms governing their expression is important in understanding patient-specific response to drugs and cancer risk factors. In silico prediction algorithm programs were used to screen for microRNAs (miRNAs) as potential regulators of UGT2B enzymes, with miR-216b-5p identified as a potential candidate.
View Article and Find Full Text PDFMetformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown.
View Article and Find Full Text PDFC-reactive protein (CRP), an acute-phase plasma protein, is a major component of inflammatory reactions functioning as a mediator of innate immunity. It has been widely used as a validated clinical biomarker of the inflammatory state in trauma, infection, and age-associated chronic diseases, including cancer and cardiovascular disease (CVD). Despite this, the molecular mechanisms that regulate CRP expression are not well understood.
View Article and Find Full Text PDFIdentifying novel mechanisms contributing to patient variability of drug response is a major goal of personalized medicine. Epigenetic regulation of gene expression by microRNA (miRNA) impacts a broad range of cellular processes, but knowledge of its regulation of drug-metabolizing enzymes (DMEs) is more limited. This review provides an introduction to miRNA and their functionality and summarizes known miRNA regulation of DME families, including the cytochrome P450s, UDP-glucuronoslytransferases, glutathione-S-transferases, sulfotransferases and aldo-keto reductases, and the transcription factors known to be involved in DME regulation.
View Article and Find Full Text PDFThe UDP-glucuronosyltransferase (UGT) 1A enzymes are involved in the phase II metabolism of many important endogenous and exogenous compounds. The nine UGT1A isoforms exhibit high interindividual differences in expression, but their epigenetic regulation is not well understood. The purpose of the present study was to examine microRNA (miRNA) regulation of hepatic UGT1A enzymes and determine whether or not that regulation impacts enzymatic activity.
View Article and Find Full Text PDFDrug Metab Dispos
January 2013
UDP-glucuronosyltransferase A1 (UGT2A1) is expressed in the lung and exhibits activity against polycyclic aromatic hydrocarbons (PAHs), suggesting UGT2A1 involvement in the local metabolism of PAH tobacco carcinogens. The goal of the present study was to investigate the importance of two additional UGT2A enzymes, UGT2A2 and UGT2A3, in tobacco carcinogen metabolism. Real-time polymerase chain reaction suggested that wild-type UGT2A2 had the highest expression in the breast, followed by trachea > larynx > kidney.
View Article and Find Full Text PDFATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells.
View Article and Find Full Text PDFGlucuronidation is an important pathway in the metabolism of nicotine, with previous studies suggesting that ∼22% of urinary nicotine metabolites are in the form of glucuronidated compounds. Recent in vitro studies have suggested that the UDP-glucuronosyltransferases (UGT) 2B10 and 2B17 play major roles in nicotine glucuronidation with polymorphisms in both enzymes shown to significantly alter the levels of nicotine-glucuronide, cotinine-glucuronide, and trans-3'-hydroxycotinine (3HC)-glucuronide in human liver microsomes in vitro. In the present study, the relationship between the levels of urinary nicotine metabolites and functional polymorphisms in UGTs 2B10 and 2B17 was analyzed in urine specimens from 104 Caucasian smokers.
View Article and Find Full Text PDF