Publications by authors named "Douglas D Fang"

Purpose: Despite approval of B-cell lymphoma (BCL)-2 inhibitor venetoclax for certain hematologic malignancies, its broader clinical benefit is curtailed by resistance. Our study aimed to determine if treatment with novel anticancer agents targeting BCL-2 and mouse double minute 2 (MDM2) could overcome venetoclax resistance in preclinical models.

Experimental Design: Venetoclax-sensitive and venetoclax-resistant acute myeloid leukemia (AML) and acute lymphoblastic leukemia cells and xenograft models were used to evaluate antitumor effects and underlying mechanisms associated with combined BCL-2 inhibitor lisaftoclax (APG-2575) and MDM2 inhibitor alrizomadlin (APG-115).

View Article and Find Full Text PDF

Purpose: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575).

Experimental Design: Computational modeling was used to design "lead" compounds.

View Article and Find Full Text PDF

Background: Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK).

View Article and Find Full Text PDF

Treatment of EGFR-mutant non-small cell lung cancer (NSCLC) with mutation-selective third-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib has achieved remarkable success in the clinic. However, the immediate challenge is the emergence of acquired resistance, limiting the long-term remission of patients. This study suggests a novel strategy to overcome acquired resistance to osimertinib and other third-generation EGFR-TKIs through directly targeting the intrinsic apoptotic pathway.

View Article and Find Full Text PDF

Introduction: FLT3-ITD mutations occur in approximately 25% of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Despite initial efficacy, short duration of response and high relapse rates limit clinical use of selective FLT3 inhibitors. Combination approaches with other targeted therapies may achieve better clinical outcomes.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous clonal disease associated with unmet medical needs. Paralleling the pathology of other cancers, AML tumorigenesis and propagation can be ascribed to dysregulated cellular processes, including apoptosis. This function and others are regulated by tumor suppressor P53, which plays a pivotal role in leukemogenesis.

View Article and Find Full Text PDF

Background: Programmed death-1 (PD-1) immune checkpoint blockade has achieved clinical successes in cancer therapy. However, the response rate of anti-PD-1 agents remains low. Additionally, a subpopulation of patients developed hyperprogressive disease upon PD-1 blockade therapy.

View Article and Find Full Text PDF

Background: Imatinib shows limited efficacy in patients with gastrointestinal stromal tumors (GISTs) carrying secondary KIT mutations. HQP1351, an orally bioavailable multikinase BCR-ABL inhibitor, is currently in clinical trials for the treatment of T315I mutant chronic myelogenous leukemia (CML), but the potential application in imatinib-resistant GISTs carrying secondary KIT mutations has not been explored.

Methods: The binding activities of HQP1351 with native or mutant KIT were first analyzed.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) represents a serious public health challenge with few therapeutic options available to cancer patients.Wnt/β-catenin pathway is thought to play a significant role in HCC pathogenesis. In this study, we confirmed high frequency of CTNNB1 (β-catenin) mutations in two independent cohorts of HCC patients and demonstrated significant upregulation of β-catenin protein in the overwhelming majority of HCC patient samples, patient-derived xenografts (PDX) and established cell lines.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the fifth most common type of cancers worldwide. However, current therapeutic approaches for this epidemic disease are limited, and its 5-year survival rate hasn't been improved in the past decades. Patient-derived xenograft (PDX) tumor models have become an excellent in vivo system for understanding of disease biology and drug discovery.

View Article and Find Full Text PDF

Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients.

View Article and Find Full Text PDF

Introduction: The aim of this study was to identify anaplastic lymphoma kinase (ALK) rearrangements in lung cancer patient-derived xenograft (PDX) models and to explore their responses to crizotinib.

Methods: Screening of 99 lung cancer PDX models by the NanoString ALK fusion assay identified two ALK-rearranged non-small-cell lung cancer (NSCLC) tumors, including one harboring a previously known echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion and another containing an unknown ALK fusion variant. Expression array, RNA-Seq, reverse transcription polymerase chain reaction, and direct sequencing were then conducted to confirm the rearrangements and to identify the novel fusion partner in the xenograft and/or the primary patient tumor.

View Article and Find Full Text PDF

PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs) in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids.

View Article and Find Full Text PDF

Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations.

View Article and Find Full Text PDF
Article Synopsis
  • Notch signaling plays a crucial role in the survival and resistance of breast cancer cells, particularly in triple-negative breast cancer (TNBC).
  • The study investigated the combination of PF-03084014 and docetaxel, revealing that PF-03084014 enhances the effectiveness of docetaxel in shrinking tumors and combating resistance in various cancer models.
  • PF-03084014 works by altering key cellular pathways, preventing cancer cells from becoming more aggressive and promoting tumor initiation, thus showing promise for improving taxane-based treatments in patients.
View Article and Find Full Text PDF

Cancer stem cells (CSCs) have received considerable attention from the research community since they were first reported in human acute myeloid leukemia 15 years ago. Accumulating evidence suggests that CSCs are responsible for tumor initiation and progression, drug resistance, and metastasis in both liquid and solid tumors. These findings lead to the development of novel compounds targeting CSC populations that is becoming increasingly important for eradicating CSCs in heterogeneous tumor masses and to cure the cancer.

View Article and Find Full Text PDF