Craters formed by the impact of agglomerated materials are commonly observed in nature, such as asteroids colliding with planets and moons. In this paper, we investigate how the projectile spin and cohesion lead to different crater shapes. For that, we carried out discrete element method computations of spinning granular projectiles impacting onto cohesionless grains for different bonding stresses, initial spins, and initial heights.
View Article and Find Full Text PDFFrom small seeds falling from trees to asteroids colliding with planets and moons, the impact of projectiles onto granular targets occurs in nature at different scales. In this paper, we investigate open questions in the mechanics of granular cratering, in particular, the forces acting on the projectile and the roles of granular packing, grain-grain friction, and projectile spin. For that, we carried out discrete element method computations of the impact of solid projectiles on a cohesionless granular medium, where we varied the projectile and grain properties (diameter, density, friction, and packing fraction) for different available energies (within relatively small values).
View Article and Find Full Text PDFWe investigate numerically how the motion of an intruder within a two-dimensional granular system affects its structure and produces drag on the intruder. We made use of discrete numerical simulations in which a larger disk (intruder) is driven at constant speed amid smaller disks confined in a rectangular cell. By varying the intruder's velocity and the basal friction, we obtained the resultant force on the intruder and the instantaneous network of contact forces, which we analyze at both the cell and grain scales.
View Article and Find Full Text PDF