Rare diseases defined by genetic mutations are classic targets for gene therapy. More recently, researchers expanded the use of gene therapy in non-clinical studies to infectious diseases through the delivery of vectorized antibodies to well-defined antigens. Here, we further extend the utility of gene therapy beyond the "accepted" indications to include organophosphate poisoning.
View Article and Find Full Text PDFNerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds.
View Article and Find Full Text PDFMice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent.
View Article and Find Full Text PDFRecombinant butyrylcholinesterase produced in a metabolically regulated transgenic rice cell culture (rrBChE) was purified to produce a highly pure (95%), active form of enzyme. The developed downstream process uses common manufacturing friendly operations including tangential flow filtration, anion-exchange chromatography, and affinity chromatography to obtain a process recovery of 42% active rrBChE. The purified rrBChE was then characterized to confirm its comparability to the native human form of the molecule (hBChE).
View Article and Find Full Text PDFSoman is a highly toxic organophosphorus chemical warfare compound that binds rapidly and irreversibility to a variety of serine active enzymes, i.e., butyryl- and acetyl-cholinesterases and carboxylesterase.
View Article and Find Full Text PDFGenetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies.
View Article and Find Full Text PDFTo develop a prophylactic for organophosphorus (OP) poisoning utilizing catalytic bioscavengers, the circulatory stability of the enzymes needs to be increased. One strategy for increasing the bioavailability of OP bioscavengers is to target them to the surface of red blood cells (RBCs). Given the circulatory lifespan of 120 days for human RBCs, this strategy has the potential for creating a persistent pool of bioscavenger.
View Article and Find Full Text PDFCurrently fielded treatments for nerve agent intoxication include atropine, an acetylcholine receptor antagonist, and pralidoxime (2PAM), a small molecule reactivator of acetylcholinesterase (AChE). 2PAM reactivates nerve agent-inhibited AChE via direct nucleophilic attack by the oxime moiety on the phosphorus center of the bound nerve agent. Due to a permanently charged pyridinium motif, 2PAM is not thought to cross the blood brain barrier and therefore cannot act directly in the neuronal junctions of the brain.
View Article and Find Full Text PDFOrganophosphorus compounds (OPs) such as sarin and soman are some of the most toxic chemicals synthesized by man. They exert toxic effects by inactivating acetylcholinesterase (AChE) and bind secondary target protein. Organophosphorus compounds are hemi-substrates for enzymes of the serine hydrolase superfamily.
View Article and Find Full Text PDFChemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF.
View Article and Find Full Text PDFWe investigated the ability of the engineered paraoxonase-1 variants G3C9, VII-D11, I-F11, and VII-D2 to afford protection against paraoxon intoxication. Paraoxon is the toxic metabolite of parathion, a common pesticide still in use in many developing countries. An in vitro investigation showed that VII-D11 is the most efficient variant at hydrolyzing paraoxon with a kcat/Km of 2.
View Article and Find Full Text PDFIn this study, we determined the ability of recombinant human liver prolidase to hydrolyze nerve agents in vitro and its ability to afford protection in vivo in mice. Using adenovirus containing the human liver prolidase gene, the enzyme was over expressed by 200- to 300-fold in mouse liver and purified to homogeneity by affinity and gel filtration chromatography. The purified enzyme hydrolyzed sarin, cyclosarin and soman with varying rates of hydrolysis.
View Article and Find Full Text PDFVariants of human paraoxonase 1 (PON1) are being developed as catalytic bioscavengers for the organophosphorus chemical warfare agents (OP). It is preferable that the new PON1 variants have broad spectrum hydrolase activities to hydrolyze both G- and V-class OPs. H115W PON1 has shown improvements over wild type PON1 in its capacity to hydrolyze some OP compounds.
View Article and Find Full Text PDFHuman paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos.
View Article and Find Full Text PDFIn an effort to discover novel catalytic bioscavengers of organophosphorus (OP) nerve agents, cell lysates from a diverse set of bacterial strains were screened for their capacity to hydrolyze the OP nerve agents VX, VR, and soman (GD). The library of bacterial strains was identified using both random and rational approaches. Specifically, two representative strains from eight categories of extremophiles were chosen at random.
View Article and Find Full Text PDFParaoxonase-1 (PON1) is a serum protein, the activity of which is related to susceptibility to cardiovascular disease and intoxication by organophosphorus (OP) compounds. It may also be involved in innate immunity, and it is a possible lead molecule in the development of a catalytic bioscavenger of OP pesticides and nerve agents. Human PON1 expressed in E.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2012
The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.
View Article and Find Full Text PDFThe highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFThe LD(50) for soman is 10-20-fold higher for a mouse than a human. The difference in susceptibility is attributed to the presence of carboxylesterase in mouse but not in human plasma. Our goal was to make a mouse lacking plasma carboxylesterase.
View Article and Find Full Text PDFHuman Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown.
View Article and Find Full Text PDFHuman butyrylcholinesterase (huBuChE) has potential utility as a post-exposure therapy following percutaneous nerve agent poisoning as there is a slower absorption of agent by this route and hence a later onset of poisoning. METHODS. We used surgically implanted radiotelemetry devices to monitor heart rate, EEG, body temperature and locomotor activity in guinea pigs challenged with VX via the percutaneous route.
View Article and Find Full Text PDFThe concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g.
View Article and Find Full Text PDFOrganophosphorus compounds include many synthetic, neurotoxic substances that are commonly used as insecticides. The toxicity of these compounds is due to their ability to inhibit the enzyme acetylcholine esterase. Some of the most toxic organophosphates have been adapted for use as chemical warfare agents; the most well-known are GA, GB, GD, GF, VX, and VR.
View Article and Find Full Text PDF