A number of sensing technologies, using a variety of transduction principles, have been proposed for non-invasive chemical sensing. A fundamental problem common to all these sensing technologies is determining what features of the transducer's signal constitute a chemical fingerprint that allows for precise analyte recognition. Of particular importance is the need to extract features that are robust with respect to the sensor's age or stimulus intensity.
View Article and Find Full Text PDFMineral borates, the primary industrial source of boron, are found in a large variety of compositions. One such source, kernite (Na2B4O6(OH)2·3H2O), offers an array of challenges for traditional electron-probe microanalysis (EPMA)-it is hygroscopic, an electrical insulator, composed entirely of light elements, and sensitive to both low pressures and the electron beam. However, the approximate stoichiometric composition of kernite can be analyzed with careful preparation, proper selection of reference materials, and attention to the details of quantification procedures, including correction for the time dependency of the sodium X-ray signal.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
October 2010
Complex analytical problems, such as detecting trace quantities of hazardous chemicals in challenging environments, require solutions that most effectively extract relevant information about a sample's composition. This review presents a chemiresistive microarray-based approach to identifying targets that combines temperature-programmed elements capable of rapidly generating analytically rich data sets with statistical pattern recognition algorithms for extracting multivariate chemical fingerprints. We describe the chemical-microsensor platform and discuss its ability to generate orthogonal data through materials selection and temperature programming.
View Article and Find Full Text PDFBulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 microm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.
View Article and Find Full Text PDFZnO nanowires (NWs) are grown on a bulk copper half-transmission electron microscopy grid by chemical vapor deposition in a high temperature tube furnace. Photoluminescence (PL) microscopy revealed band gap emission at 380 nm and a more intense visible emission around 520 nm due to defect states in these NWs. High-resolution transmission electron microscopy shows that the ZnO NWs are single crystalline with hexagonal structure.
View Article and Find Full Text PDFInfrared reflection absorption spectroscopy (IRAS) has been used to study CO adsorption on Au clusters ranging in size from 1.8 to 3.1 nm, supported on TiO(2).
View Article and Find Full Text PDF