Genome Sequence Scanning (GSS) is a bacterial identification technology that detects sparse sequence-specific fluorescent tags on long DNA molecules linearized in a continuous-flow microfunnel. The efficiency and sensitivity of GSS depends on the detection throughput of well-stretched molecules. Previous studies have investigated the fundamental roles of elongational and shear flow on DNA stretching in continuous flow devices.
View Article and Find Full Text PDFHere we describe bacterial genotyping by direct linear analysis (DLA) single-molecule mapping. DLA involves preparation of restriction digest of genomic DNA labeled with a sequence-specific fluorescent probe and stained nonspecifically with intercalator. These restriction fragments are stretched one by one in a microfluidic device, and the distribution of probes on the fragments is determined by single-molecule measurement of probe fluorescence.
View Article and Find Full Text PDFBackground: Epidemiologic studies require identification or typing of microbial strains. Macrorestriction DNA mapping analyzed by pulsed-field gel electrophoresis (PFGE) is considered the current gold standard of genomic typing. This technique, however, is difficult to implement because it is labor-intensive and difficult to automate, it requires a long time to obtain results, and results often vary between laboratories.
View Article and Find Full Text PDF