Mixture toxicity was determined for 32 binary combinations. One chemical was the non-reactive, non-polar narcotic 3-methyl-2-butanone (always chemical A) and the other was a potentially reactive electrophile (chemical B). Bioluminescence inhibition in Allovibrio fischeri was measured at 15-, 30-, and 45-minutes of exposure for A, B, and the mixture (MX).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) represent a large class of structurally diverse chemicals of increasing public concern, mostly due to their chemical stability and undetermined toxicity profiles. In laboratory animals, adverse effects implicated for certain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in particular, include liver toxicity and the associated metabolic dysregulation, immune and thyroid alterations, reproductive toxicity, and selected tumors. The broad commercialization and environmental distribution of PFAS has drawn attention to the need for understanding risks associated with combined exposure to multiple PFAS in complex mixtures.
View Article and Find Full Text PDFToxicol Res (Camb)
July 2019
Time-dependent toxicity data of specific toxicants observed against were analysed using a single time-dependent Weibull cumulative distribution function (CDF). For binary mixtures the individual Weibull parameters provided the marginals for a bivariate copula model, characterised by a single extra parameter, the interaction exponent, . The copula model unites both the dose addition (DA, Loewe additivity) and dose independence (DI, Bliss independence) hypotheses of combinations into a single explicit equation and returns both hypotheses as special cases.
View Article and Find Full Text PDFMixture and time-dependent toxicity (TDT) was assessed for a series of mono-halogenated acetonitrile-containing combinations. Inhibition of bioluminescence in was measured after 15, 30 and 45-min of exposure. Concentration-response (x/y) curves were determined for each chemical alone at each timepoint, and used to develop predicted x/y curves for the dose-addition and independence models of combined effect.
View Article and Find Full Text PDFThe value of time-dependent toxicity (TDT) data in predicting mixture toxicity was examined. Single chemical (A and B) and mixture (A+B) toxicity tests using Microtox(®) were conducted with inhibition of bioluminescence (Vibrio fischeri) being quantified after 15, 30 and 45-min of exposure. Single chemical and mixture tests for 25 sham (A1:A2) and 125 true (A:B) combinations had a minimum of seven duplicated concentrations with a duplicated control treatment for each test.
View Article and Find Full Text PDFIn mixture toxicity, concentration-effect data are often used to generate conclusions on combined effect. While models of combined effect are available for such assessments, proper fitting of the data is critical to obtaining accurate conclusions. In this study an asymmetry parameter (s) was evaluated for data-fitting and compared with our previous approach.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2008
Toxicity assessments for organic chemical mixtures are often described as being approximately additive. Recent mixture studies with soft electrophiles have suggested that agents with less-than fully time-dependent toxicity (TDT) may actually induce toxicity by more than one mode of toxic action within the same series of concentrations. To evaluate this concept further, four Michael acceptor electrophiles, each with a different rate of in chemico reactivity and different level of TDT, were tested with each other and in sham combinations (a single chemical tested as if it were a binary mixture) using the Microtox system.
View Article and Find Full Text PDFThe toxicity of 30 binary combinations of 10 soft electrophiles was examined in Microtox using dose-response curve (DRC) analysis. Chemicals from three groups of soft electrophiles-vinyl Michael acceptors (I--react with a thiol group), dicarbonyl reactive agents (II--react with a primary amine), and alpha-haloactivation compounds (III--react with a thiol group)--were selected for testing to evaluate the relationship between molecular site of chemical action and combined toxic effect. For each combination tested, each single agent was tested alone at six duplicated concentrations and three 1:1 mixtures of the agents were also tested, each at six duplicated concentrations.
View Article and Find Full Text PDFSingle-chemical and mixture concentration-response curves generated using a frog embryo model were examined for value in assessing whether chemicals exert toxic effects at the same or at different molecular sites of action. Toxicity tests were conducted on a series of osteolathyrogens, i.e.
View Article and Find Full Text PDFDespite their importance as a research model, particularly in developmental toxicology investigations, there are few established standards for maintaining Xenopus spp. frogs in the laboratory. The authors review the literature on handling, housing, nutrition, and breeding of Xenopus spp.
View Article and Find Full Text PDFIn vitro reactivity for each of four osteolathyrogens with a model compound for the lysyl oxidase (LO) cofactor was evaluated and coupled with mixture toxicity testing to evaluate agent-cofactor reactivity as a potential mechanism of action for osteolathyrism. Reactivity of the model cofactor (mLTQ: 4-butylamino-5-methyl-o-quinone), with each of two ureides, semicarbazide (SC) and thiosemicarbazide (TSC), and each of two aminonitriles, aminoacetonitrile (AAN) and beta-aminopropionitrile (betaAPN), was assessed using UV-vis spectrophotometry; both in the absence and presence of Cu(II)-bipyridine (bipy) complex. Two sets of mixture toxicity experiments were conducted using a frog embryo assay that assessed the incidence of osteolathyrism in the notochord of tadpoles after 96-h exposure.
View Article and Find Full Text PDF